Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Antidepressant-like and anxiolytic-like effects following activation of the μ-δ opioid receptor heteromer in the nucleus accumbens

Abstract

Treatment-resistant major depressive disorder remains inadequately treated with currently available antidepressants. Opioid receptors (ORs) are involved in the pathophysiology of depression yet remain an untapped therapeutic intervention. The μ-δ OR heteromer represents a unique signaling complex with distinct properties compared with μ- and δ-OR homomers; however, its role in depression has not been characterized. As there are no ligands exclusively targeting the μ-δ heteromer, we devised a strategy to selectively antagonize the function of the μ-δOR complex using a specific interfering peptide derived from the δOR distal carboxyl tail, a sequence implicated in μ-δOR heteromerization. In vitro studies using a minigene expressing this peptide demonstrated a loss of the unique pharmacological and trafficking properties of δ-agonists at the μ-δ heteromer, with no effect on μ- or δ-OR homomers, and a dissociation of the μ-δOR complex. Intra-accumbens administration of the TAT-conjugated interfering peptide abolished the antidepressant-like and anxiolytic-like actions of the δ-agonist UFP-512 (H-Dmt-Tic-NH-CH(CH2-COOH)-Bid) measured in the forced swim test, novelty-induced hypophagia and elevated plus maze paradigms in rats. UFP-512’s antidepressant-like and anxiolytic-like actions were abolished by pretreatment with either μOR or δOR antagonists. Overall, these findings demonstrate that the μ-δ heteromer may be a potential suitable therapeutic target for treatment-resistant depression and anxiety disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry 2006; 163: 28–40.

    Article  Google Scholar 

  2. Darko DF, Risch SC, Gillin JC, Golshan S . Association of beta-endorphin with specific clinical symptoms of depression. Am J Psychiatry 1992; 149: 1162–1167.

    Article  CAS  Google Scholar 

  3. Kennedy SE, Koeppe RA, Young EA, Zubieta JK . Dysregulation of endogenous opioid emotion regulation circuitry in major depression in women. Arch Gen Psychiatry 2006; 63: 1199–1208.

    Article  CAS  Google Scholar 

  4. Zubieta JK, Ketter TA, Bueller JA, Xu Y, Kilbourn MR, Young EA et al. Regulation of human affective responses by anterior cingulate and limbic mu-opioid neurotransmission. Arch Gen Psychiatry 2003; 60: 1145–1153.

    Article  CAS  Google Scholar 

  5. Nyhuis PW, Gastpar M, Scherbaum N . Opiate treatment in depression refractory to antidepressants and electroconvulsive therapy. J Clin Psychopharmacol 2008; 28: 593–595.

    Article  Google Scholar 

  6. Bodkin JA, Zornberg GL, Lukas SE, Cole JO . Buprenorphine treatment of refractory depression. J Clin Psychopharmacol 1995; 15: 49–57.

    Article  CAS  Google Scholar 

  7. Emrich HM, Vogt P, Herz A, Kissling W . Antidepressant effects of buprenorphine. Lancet 1982; 2: 709.

    Article  CAS  Google Scholar 

  8. Emrich HM . A possible role of opioid substances in depression. Adv Biochem Psychopharmacol 1982; 32: 77–84.

    CAS  PubMed  Google Scholar 

  9. Emrich HM, Vogt P, Herz A . Possible antidepressive effects of opioids: action of buprenorphine. Ann N Y Acad Sci 1982; 398: 108–112.

    Article  CAS  Google Scholar 

  10. Extein I, Pickar D, Gold MS, Gold PW, Pottash AL, Sweeney DR et al. Methadone and morphine in depression [proceedings]. Psychopharmacol Bull 1981; 17: 29–33.

    CAS  PubMed  Google Scholar 

  11. Hegadoren KM, O'Donnell T, Lanius R, Coupland NJ, Lacaze-Masmonteil N . The role of beta-endorphin in the pathophysiology of major depression. Neuropeptides 2009; 43: 341–353.

    Article  CAS  Google Scholar 

  12. Kabli N, Martin N, Fan T, Nguyen T, Hasbi A, Balboni G et al. Agonists at the delta-opioid receptor modify the binding of micro-receptor agonists to the micro-delta receptor hetero-oligomer. Br J Pharmacol 2010; 161: 1122–1136.

    Article  CAS  Google Scholar 

  13. George SR, Fan T, Xie Z, Tse R, Tam V, Varghese G et al. Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. J Biol Chem 2000; 275: 26128–26135.

    Article  CAS  Google Scholar 

  14. Fan T, Varghese G, Nguyen T, Tse R, O'Dowd BF, George SR . A role for the distal carboxyl tails in generating the novel pharmacology and G protein activation profile of mu and delta opioid receptor hetero-oligomers. J Biol Chem 2005; 280: 38478–38488.

    Article  CAS  Google Scholar 

  15. Gomes I, Gupta A, Filipovska J, Szeto HH, Pintar JE, Devi LA . A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia. Proc Natl Acad Sci USA 2004; 101: 5135–5139.

    Article  CAS  Google Scholar 

  16. Milan-Lobo L, Whistler JL . Heteromerization of the mu- and delta-opioid receptors produces ligand-biased antagonism and alters mu-receptor trafficking. J Pharmacol Exp Ther 2011; 337: 868–875.

    Article  CAS  Google Scholar 

  17. Torregrossa MM, Jutkiewicz EM, Mosberg HI, Balboni G, Watson SJ, Woods JH . Peptidic delta opioid receptor agonists produce antidepressant-like effects in the forced swim test and regulate BDNF mRNA expression in rats. Brain Res 2006; 1069: 172–181.

    Article  CAS  Google Scholar 

  18. Broom DC, Jutkiewicz EM, Folk JE, Traynor JR, Rice KC, Woods JH . Nonpeptidic delta-opioid receptor agonists reduce immobility in the forced swim assay in rats. Neuropsychopharmacology 2002; 26: 744–755.

    Article  CAS  Google Scholar 

  19. Perrine SA, Hoshaw BA, Unterwald EM . Delta opioid receptor ligands modulate anxiety-like behaviors in the rat. Br J Pharmacol 2006; 147: 864–872.

    Article  CAS  Google Scholar 

  20. Jutkiewicz EM . The antidepressant -like effects of delta-opioid receptor agonists. Mol Interv 2006; 6: 162–169.

    Article  CAS  Google Scholar 

  21. Broom DC, Jutkiewicz EM, Rice KC, Traynor JR, Woods JH . Behavioral effects of delta-opioid receptor agonists: potential antidepressants? Jpn J Pharmacol 2002; 90: 1–6.

    Article  CAS  Google Scholar 

  22. Kastin AJ, Scollan EL, Ehrensing RH, Schally AV, Coy DH . Enkephalin and other peptides reduce passiveness. Pharmacol Biochem Behav 1978; 9: 515–519.

    Article  CAS  Google Scholar 

  23. Vergura R, Balboni G, Spagnolo B, Gavioli E, Lambert DG, McDonald J et al. Anxiolytic- and antidepressant-like activities of H-Dmt-Tic-NH-CH(CH2-COOH)-Bid (UFP-512), a novel selective delta opioid receptor agonist. Peptides 2008; 29: 93–103.

    Article  CAS  Google Scholar 

  24. Baamonde A, Dauge V, Ruiz-Gayo M, Fulga IG, Turcaud S, Fournie-Zaluski MC et al. Antidepressant-type effects of endogenous enkephalins protected by systemic RB 101 are mediated by opioid delta and dopamine D1 receptor stimulation. Eur J Pharmacol 1992; 216: 157–166.

    Article  CAS  Google Scholar 

  25. Pradhan AA, Befort K, Nozaki C, Gaveriaux-Ruff C, Kieffer BL . The delta opioid receptor: an evolving target for the treatment of brain disorders. Trends Pharmacol Sci 2011; 32: 581–590.

    Article  CAS  Google Scholar 

  26. Scherrer G, Befort K, Contet C, Becker J, Matifas A, Kieffer BL . The delta agonists DPDPE and deltorphin II recruit predominantly mu receptors to produce thermal analgesia: a parallel study of mu, delta and combinatorial opioid receptor knockout mice. Eur J Neurosci 2004; 19: 2239–2248.

    Article  Google Scholar 

  27. Gaveriaux-Ruff C, Kieffer BL . Opioid receptor genes inactivated in mice: the highlights. Neuropeptides 2002; 36: 62–71.

    Article  CAS  Google Scholar 

  28. Oleskevich S, Leck KJ, Matthaei K, Hendry IA . Enhanced serotonin response in the hippocampus of Galphaz protein knock-out mice. Neuroreport 2005; 16: 921–925.

    Article  CAS  Google Scholar 

  29. Gupta A, Mulder J, Gomes I, Rozenfeld R, Bushlin I, Ong E et al. Increased abundance of opioid receptor heteromers after chronic morphine administration. Sci Signal 2010; 3, ra54.

  30. Epstein J, Pan H, Kocsis JH, Yang Y, Butler T, Chusid J et al. Lack of ventral striatal response to positive stimuli in depressed versus normal subjects. Am J Psychiatry 2006; 163: 1784–1790.

    Article  Google Scholar 

  31. Forbes EE, Hariri AR, Martin SL, Silk JS, Moyles DL, Fisher PM et al. Altered striatal activation predicting real-world positive affect in adolescent major depressive disorder. Am J Psychiatry 2009; 166: 64–73.

    Article  Google Scholar 

  32. Bewernick BH, Hurlemann R, Matusch A, Kayser S, Grubert C, Hadrysiewicz B et al. Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry 2011; 67: 110–116.

    Article  Google Scholar 

  33. Grubert C, Hurlemann R, Bewernick BH, Kayser S, Hadrysiewicz B, Axmacher N et al. Neuropsychological safety of nucleus accumbens deep brain stimulation for major depression: effects of 12-month stimulation. World J Biol Psychiatry 2011; 12: 516–527.

    Article  Google Scholar 

  34. Balboni G, Salvadori S, Guerrini R, Negri L, Giannini E, Jinsmaa Y et al. Potent delta-opioid receptor agonists containing the Dmt-Tic pharmacophore. J Med Chem 2002; 45: 5556–5563.

    Article  CAS  Google Scholar 

  35. Paxinos G, Watson CR . The Rat Brain in Stereotaxic Coordinates Fourth ed. Academic Press: New York, NY, USA, 1998.

    Google Scholar 

  36. Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF . In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 1999; 285: 1569–1572.

    Article  CAS  Google Scholar 

  37. Mao SC, Lin HC, Gean PW . Augmentation of fear extinction by infusion of glycine transporter blockers into the amygdala. Mol Pharmacol 2009; 76: 369–378.

    Article  CAS  Google Scholar 

  38. Brebner K, Wong TP, Liu L, Liu Y, Campsall P, Gray S et al. Nucleus accumbens long-term depression and the expression of behavioral sensitization. Science 2005; 310: 1340–1343.

    Article  CAS  Google Scholar 

  39. Kim J, Lee S, Park H, Song B, Hong I, Geum D et al. Blockade of amygdala metabotropic glutamate receptor subtype 1 impairs fear extinction. Biochem Biophys Res Commun 2007; 355: 188–193.

    Article  CAS  Google Scholar 

  40. Porsolt RD, Anton G, Blavet N, Jalfre M . Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 1978; 47: 379–391.

    Article  CAS  Google Scholar 

  41. Lucki I, Singh A, Kreiss DS . Antidepressant-like behavioral effects of serotonin receptor agonists. Neurosci Biobehav Rev 1994; 18: 85–95.

    Article  CAS  Google Scholar 

  42. Randall-Thompson JF, Pescatore KA, Unterwald EM . A role for delta opioid receptors in the central nucleus of the amygdala in anxiety-like behaviors. Psychopharmacology (Berl) 2010; 212: 585–595.

    Article  CAS  Google Scholar 

  43. Matsuzaki S, Ikeda H, Akiyama G, Sato M, Moribe S, Suzuki T et al. Role of mu- and delta-opioid receptors in the nucleus accumbens in turning behaviour of rats. Neuropharmacology 2004; 46: 1089–1096.

    Article  CAS  Google Scholar 

  44. Hawkins MF, Cubic B, Baumeister AA, Barton C . Microinjection of opioid antagonists into the substantia nigra reduces stress-induced eating in rats. Brain Res 1992; 584: 261–265.

    Article  CAS  Google Scholar 

  45. Braida D, Paladini E, Gori E, Sala M . Naltrexone, naltrindole, and CTOP block cocaine-induced sensitization to seizures and death. Peptides 1997; 18: 1189–1195.

    Article  CAS  Google Scholar 

  46. Schmidt BL, Tambeli CH, Levine JD, Gear RW . mu/delta Cooperativity and opposing kappa-opioid effects in nucleus accumbens-mediated antinociception in the rat. Eur J Neurosci 2002; 15: 861–868.

    Article  Google Scholar 

  47. Gear RW, Levine JD . Nucleus accumbens facilitates nociception. Exp Neurol 2011; 229: 502–506.

    Article  CAS  Google Scholar 

  48. Xiong W, Yu LC . Involvements of mu- and kappa-opioid receptors in morphine-induced antinociception in the nucleus accumbens of rats. Neurosci Lett 2006; 399: 167–170.

    Article  CAS  Google Scholar 

  49. Li Y, Li JJ, Yu LC . Anti-nociceptive effect of neuropeptide Y in the nucleus accumbens of rats: an involvement of opioid receptors in the effect. Brain Res 2002; 940: 69–78.

    Article  CAS  Google Scholar 

  50. Rogoz Z, Skuza G, Leskiewicz M, Budziszewska B . Effects of co-administration of fluoxetine or tianeptine with metyrapone on immobility time and plasma corticosterone concentration in rats subjected to the forced swim test. Pharmacol Rep 2008; 60: 880–888.

    CAS  PubMed  Google Scholar 

  51. Tatarczynska E, Klodzinska A, Chojnacka-Wojcik E . Effects of combined administration of 5-HT1A and/or 5-HT1B receptor antagonists and paroxetine or fluoxetine in the forced swimming test in rats. Pol J Pharmacol 2002; 54: 615–623.

    CAS  PubMed  Google Scholar 

  52. Berrocoso E, Mico JA . Cooperative opioid and serotonergic mechanisms generate superior antidepressant-like effects in a mice model of depression. Int J Neuropsychopharmacol 2009; 12: 1033–1044.

    Article  CAS  Google Scholar 

  53. Dulawa SC, Hen R . Recent advances in animal models of chronic antidepressant effects: the novelty-induced hypophagia test. Neurosci Biobehav Rev 2005; 29: 771–783.

    Article  CAS  Google Scholar 

  54. Pellow S, Chopin P, File SE, Briley M . Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 1985; 14: 149–167.

    Article  CAS  Google Scholar 

  55. Wang H, Pickel VM . Preferential cytoplasmic localization of delta-opioid receptors in rat striatal patches: comparison with plasmalemmal mu-opioid receptors. J Neurosci 2001; 21: 3242–3250.

    Article  CAS  Google Scholar 

  56. Pickel VM, Towle AC, Joh TH, Chan J . Gamma-aminobutyric acid in the medial rat nucleus accumbens: ultrastructural localization in neurons receiving monosynaptic input from catecholaminergic afferents. J Comp Neurol 1988; 272: 1–14.

    Article  CAS  Google Scholar 

  57. Svingos AL, Moriwaki A, Wang JB, Uhl GR, Pickel VM . Ultrastructural immunocytochemical localization of mu-opioid receptors in rat nucleus accumbens: extrasynaptic plasmalemmal distribution and association with Leu5-enkephalin. J Neurosci 1996; 16: 4162–4173.

    Article  CAS  Google Scholar 

  58. Svingos AL, Clarke CL, Pickel VM . Cellular sites for activation of delta-opioid receptors in the rat nucleus accumbens shell: relationship with Met5-enkephalin. J Neurosci 1998; 18: 1923–1933.

    Article  CAS  Google Scholar 

  59. Svingos AL, Moriwaki A, Wang JB, Uhl GR, Pickel VM . mu-Opioid receptors are localized to extrasynaptic plasma membranes of GABAergic neurons and their targets in the rat nucleus accumbens. J Neurosci 1997; 17: 2585–2594.

    Article  CAS  Google Scholar 

  60. Hipolito L, Sanchez-Catalan MJ, Zanolini I, Polache A, Granero L . Shell/core differences in mu- and delta-opioid receptor modulation of dopamine efflux in nucleus accumbens. Neuropharmacology 2008; 55: 183–189.

    Article  CAS  Google Scholar 

  61. Hirose N, Murakawa K, Takada K, Oi Y, Suzuki T, Nagase H et al. Interactions among mu- and delta-opioid receptors, especially putative delta1- and delta2-opioid receptors, promote dopamine release in the nucleus accumbens. Neuroscience 2005; 135: 213–225.

    Article  CAS  Google Scholar 

  62. Willner P . The mesolimbic dopamine system as a target for rapid antidepressant action. Int Clin Psychopharmacol 1997; 12 (Suppl 3): S7–14.

    Article  Google Scholar 

  63. Kitamura Y, Yagi T, Kitagawa K, Shinomiya K, Kawasaki H, Asanuma M et al. Effects of bupropion on the forced swim test and release of dopamine in the nucleus accumbens in ACTH-treated rats. Naunyn Schmiedebergs Arch Pharmacol 2010; 382: 151–158.

    Article  CAS  Google Scholar 

  64. Bosse KE, Jutkiewicz EM, Gnegy ME, Traynor JR . The selective delta opioid agonist SNC80 enhances amphetamine-mediated efflux of dopamine from rat striatum. Neuropharmacology 2008; 55: 755–762.

    Article  CAS  Google Scholar 

  65. Do Carmo GP, Folk JE, Rice KC, Chartoff E, Carlezon WA Jr., Negus SS . The selective non-peptidic delta opioid agonist SNC80 does not facilitate intracranial self-stimulation in rats. Eur J Pharmacol 2009; 604: 58–65.

    Article  CAS  Google Scholar 

  66. Nestler EJ, Carlezon WA Jr. . The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 2006; 59: 1151–1159.

    CAS  Google Scholar 

  67. Tye KM, Mirzabekov JJ, Warden MR, Ferenczi EA, Tsai HC, Finkelstein J et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 2012; 493: 537–541.

    Article  Google Scholar 

  68. Alexander B, Warner-Schmidt J, Eriksson T, Tamminga C, Arango-Lievano M, Ghose S et al. Reversal of depressed behaviors in mice by p11 gene therapy in the nucleus accumbens. Sci Transl Med 2010; 2, 54ra76.

  69. Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku SM, Koo JW et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 2012; 493: 532–536.

    Article  Google Scholar 

  70. Christoffel DJ, Golden SA, Heshmati M, Graham A, Birnbaum S, Neve RL et al. Effects of inhibitor of kappaB kinase activity in the nucleus accumbens on emotional behavior. Neuropsychopharmacology 2012; 37: 2615–2623.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by a grant from the Canadian Institutes of Health Research and an Ontario Mental Health Foundation Research Studentship (NK). Dr Susan R George holds a Tier I Canada Research Chair in Molecular Neuroscience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S R George.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

NK and SRG designed the study and wrote the manuscript. NK performed radioligand binding, whole-cell binding, protein expression and coimmunoprecipitation, stereotaxic surgery and behavioral experiments. TN made the peptide minigene constructs. GB synthesized UFP-512. SRG and BFO supervised the project.

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kabli, N., Nguyen, T., Balboni, G. et al. Antidepressant-like and anxiolytic-like effects following activation of the μ-δ opioid receptor heteromer in the nucleus accumbens. Mol Psychiatry 19, 986–994 (2014). https://doi.org/10.1038/mp.2013.115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2013.115

Keywords

This article is cited by

Search

Quick links