Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Corticotropin-releasing factor and urocortin regulate spine and synapse formation: structural basis for stress-induced neuronal remodeling and pathology

Abstract

Dendritic spines are important sites of excitatory neurotransmission in the brain with their function determined by their structure and molecular content. Alterations in spine number, morphology and receptor content are a hallmark of many psychiatric disorders, most notably those because of stress. We investigated the role of corticotropin-releasing factor (CRF) stress peptides on the plasticity of spines in the cerebellum, a structure implicated in a host of mental illnesses, particularly of a developmental origin. We used organotypic slice cultures of the cerebellum and restraint stress in behaving animals to determine whether CRF in vitro and stress in vivo affects Purkinje cell (PC) spine density. Application of CRF and urocortin (UCN) to cerebellar slice cultures increased the density of spines on PC signaling via CRF receptors (CRF-Rs) 1 and 2 and RhoA downregulation, although the structural phenotypes of the induced spines varied, suggesting that CRF-Rs differentially induce the outgrowth of functionally distinct populations of spines. Furthermore, CRF and UCN exert a trophic effect on the surface contact between synaptic elements by increasing active zones and postsynaptic densities and facilitating the alignment of pre- and post-synaptic membranes of synapses on PCs. In addition, 1 h of restraint stress significantly increased PC spine density compared with those animals that were only handled. This study provides unprecedented resolution of CRF pathways that regulate the structural machinery essential for synaptic transmission and provides a basis for understanding stress-induced mental illnesses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. McEwen BS, Gianaros PJ . Central role of the brain in stress and adaptation: links to socioeconomic status, health, and disease. Ann NY Acad Sci 2010; 1186: 190–222.

    Article  Google Scholar 

  2. McEwen BS . The ever-changing brain: cellular and molecular mechanisms for the effects of stressful experiences. Dev Neurobiol 2011; doi:10.1002/dneu.20968.

    Article  CAS  Google Scholar 

  3. Stewart MG, Davies HA, Sandi C, Kraev IV, Rogachevsky VV, Peddie CJ et al. Stress suppresses and learning induces plasticity in CA3 of rat hippocampus: a three-dimensional ultrastructural study of thorny excrescences and their postsynaptic densities. Neuroscience 2005; 131: 43–54.

    Article  CAS  Google Scholar 

  4. Sunanda Rao MS, Raju TR . Effect of chronic restraint stress on dendritic spines and excrescences of hippocampal CA3 pyramidal neurons--a quantitative study. Brain Res 1995; 694: 312–317.

    Article  Google Scholar 

  5. McLaughlin KJ, Baran SE, Conrad CD . Chronic stress- and sex-specific neuromorphological and functional changes in limbic structures. Mol Neurobiol 2009; 40: 166–182.

    Article  CAS  Google Scholar 

  6. Bhatt DH, Zhang S, Gan WB . Dendritic spine dynamics. Annu Rev Physiol 2009; 71: 261–282.

    Article  CAS  Google Scholar 

  7. Lee KJ, Kim H, Rhyu IJ . The roles of dendritic spine shapes in Purkinje cells. Cerebellum 2005; 4: 97–104.

    Article  CAS  Google Scholar 

  8. Llinas R, Welsh JP . On the cerebellum and motor learning. Curr Opin Neurobiol 1993; 3: 958–965.

    Article  CAS  Google Scholar 

  9. Leiner HC . Solving the mystery of the human cerebellum. Neuropsychol Rev 2010; 20: 229–235.

    Article  Google Scholar 

  10. Stoodley CJ, Schmahmann JD . Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 2010; 46: 831–844.

    Article  Google Scholar 

  11. Yin Y, Li L, Jin C, Hu X, Duan L, Eyler LT et al. Abnormal baseline brain activity in posttraumatic stress disorder: a resting-state functional magnetic resonance imaging study. Neurosci Lett 2011; 498: 185–189.

    Article  CAS  Google Scholar 

  12. Xing G, Carlton J, Zhang L, Jiang X, Fullerton C, Li H et al. Cannabinoid receptor expression and phosphorylation are differentially regulated between male and female cerebellum and brain stem after repeated stress: implication for PTSD and drug abuse. Neurosci Lett 2011; 502: 5–9.

    Article  CAS  Google Scholar 

  13. Dautzenberg FM, Hauger RL . The CRF peptide family and their receptors: yet more partners discovered. Trends Pharmacol Sci 2002; 23: 71–77.

    Article  CAS  Google Scholar 

  14. Binder EB, Nemeroff CB . The CRF system, stress, depression and anxiety-insights from human genetic studies. Mol Psychiatry 2010; 15: 574–588.

    Article  CAS  Google Scholar 

  15. Chen Y, Bender RA, Brunson KL, Pomper JK, Grigoriadis DE, Wurst W et al. Modulation of dendritic differentiation by corticotropin-releasing factor in the developing hippocampus. Proc Natl Acad Sci USA 2004; 101: 15782–15787.

    Article  CAS  Google Scholar 

  16. Chen Y, Rex CS, Rice CJ, Dube CM, Gall CM, Lynch G et al. Correlated memory defects and hippocampal dendritic spine loss after acute stress involve corticotropin-releasing hormone signaling. Proc Natl Acad Sci USA 2010; 107: 13123–13128.

    Article  CAS  Google Scholar 

  17. Swinny JD, Metzger F, IJkema-Paassen J, Gounko NV, Gramsbergen A, van der Want JJ . Corticotropin-releasing factor and urocortin differentially modulate rat Purkinje cell dendritic outgrowth and differentiation in vitro. Eur J Neurosci 2004; 19: 1749–1758.

    Article  CAS  Google Scholar 

  18. Tyler WJ, Pozzo-Miller LD . BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses. J Neurosci 2001; 21: 4249–4258.

    Article  CAS  Google Scholar 

  19. Swinny JD, Valentino RJ . Corticotropin-releasing factor promotes growth of brain norepinephrine neuronal processes through Rho GTPase regulators of the actin cytoskeleton in rat. Eur J Neurosci 2006; 24: 2481–2490.

    Article  Google Scholar 

  20. Hauger RL, Risbrough V, Brauns O, Dautzenberg FM . Corticotropin releasing factor (CRF) receptor signaling in the central nervous system: new molecular targets. CNS Neurol Disord Drug Targets 2006; 5: 453–479.

    Article  CAS  Google Scholar 

  21. Bishop GA, Seelandt CM, King JS . Cellular localization of corticotropin releasing factor receptors in the adult mouse cerebellum. Neuroscience 2000; 101: 1083–1092.

    Article  CAS  Google Scholar 

  22. Riegel AC, Williams JT . CRF facilitates calcium release from intracellular stores in midbrain dopamine neurons. Neuron 2008; 57: 559–570.

    Article  CAS  Google Scholar 

  23. Zakharenko S, Chang S, O’Donoghue M, Popov SV . Neurotransmitter secretion along growing nerve processes: comparison with synaptic vesicle exocytosis. J Cell Biol 1999; 144: 507–518.

    Article  CAS  Google Scholar 

  24. Hioki H, Fujiyama F, Taki K, Tomioka R, Furuta T, Tamamaki N et al. Differential distribution of vesicular glutamate transporters in the rat cerebellar cortex. Neuroscience 2003; 117: 1–6.

    Article  CAS  Google Scholar 

  25. Sigrist SJ, Schmitz D . Structural and functional plasticity of the cytoplasmic active zone. Curr Opin Neurobiol 2011; 21: 144–150.

    Article  CAS  Google Scholar 

  26. Kim E, Sheng M . PDZ domain proteins of synapses. Nat Rev Neurosci 2004; 5: 771–781.

    Article  CAS  Google Scholar 

  27. Takeuchi T, Miyazaki T, Watanabe M, Mori H, Sakimura K, Mishina M . Control of synaptic connection by glutamate receptor delta2 in the adult cerebellum. J Neurosci 2005; 25: 2146–2156.

    Article  CAS  Google Scholar 

  28. McEwen BS, Eiland L, Hunter RG, Miller MM . Stress and anxiety: structural plasticity and epigenetic regulation as a consequence of stress. Neuropharmacology 2011; 62: 3–12.

    Article  Google Scholar 

  29. Mychasiuk R, Gibb R, Kolb B . Prenatal bystander stress induces neuroanatomical changes in the prefrontal cortex and hippocampus of developing rat offspring. Brain Res 2011; 1412: 55–62.

    Article  CAS  Google Scholar 

  30. Bock J, Murmu MS, Biala Y, Weinstock M, Braun K . Prenatal stress and neonatal handling induce sex-specific changes in dendritic complexity and dendritic spine density in hippocampal subregions of prepubertal rats. Neuroscience 2011; 193: 34–43.

    Article  CAS  Google Scholar 

  31. Martinez-Tellez RI, Hernandez-Torres E, Gamboa C, Flores G . Prenatal stress alters spine density and dendritic length of nucleus accumbens and hippocampus neurons in rat offspring. Synapse 2009; 63: 794–804.

    Article  CAS  Google Scholar 

  32. Shansky RM, Hamo C, Hof PR, McEwen BS, Morrison JH . Stress-induced dendritic remodeling in the prefrontal cortex is circuit specific. Cereb Cortex 2009; 19: 2479–2484.

    Article  Google Scholar 

  33. Liston C, Gan WB . Glucocorticoids are critical regulators of dendritic spine development and plasticity in vivo. Proc Natl Acad Sci USA 2011; 108: 16074–16079.

    Article  CAS  Google Scholar 

  34. Ito M . Mechanisms of motor learning in the cerebellum. Brain Res 2000; 886: 237–245.

    Article  CAS  Google Scholar 

  35. Miyata M, Okada D, Hashimoto K, Kano M, Ito M . Corticotropin-releasing factor plays a permissive role in cerebellar long-term depression. Neuron 1999; 22: 763–775.

    Article  CAS  Google Scholar 

  36. Penzes P, Cahill ME, Jones KA, VanLeeuwen JE, Woolfrey KM . Dendritic spine pathology in neuropsychiatric disorders. Nat Neurosci 2011; 14: 285–293.

    Article  CAS  Google Scholar 

  37. Gorman JM, Docherty JP . A hypothesized role for dendritic remodeling in the etiology of mood and anxiety disorders. J Neuropsychiatry Clin Neurosci 2010; 22: 256–264.

    Article  Google Scholar 

  38. Segal M . Dendritic spines and long-term plasticity. Nat Rev Neurosci 2005; 6: 277–284.

    Article  CAS  Google Scholar 

  39. Kasai H, Fukuda M, Watanabe S, Hayashi-Takagi A, Noguchi J . Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci 2010; 33: 121–129.

    Article  CAS  Google Scholar 

  40. Fiala JC, Spacek J, Harris KM . Dendritic spine pathology: cause or consequence of neurological disorders? Brain Res Brain Res Rev 2002; 39: 29–54.

    Article  Google Scholar 

  41. Cingolani LA, Goda Y . Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci 2008; 9: 344–356.

    Article  CAS  Google Scholar 

  42. Negishi M, Katoh H . Rho family GTPases and dendrite plasticity. Neuroscientist 2005; 11: 187–191.

    Article  CAS  Google Scholar 

  43. Li Z, Van Aelst L, Cline HT . Rho GTPases regulate distinct aspects of dendritic arbor growth in Xenopus central neurons in vivo. Nat Neurosci 2000; 3: 217–225.

    Article  CAS  Google Scholar 

  44. Chen Y, Kramar EA, Chen LY, Babayan AH, Andres AL, Gall CM et al. Impairment of synaptic plasticity by the stress mediator CRH involves selective destruction of thin dendritic spines via RhoA signaling. Mol Psychiatry; advance online publication, 13 March 2012; doi:10.1038/mp.2012.17.

    Article  Google Scholar 

  45. Mueller BK, Mack H, Teusch N . Rho kinase, a promising drug target for neurological disorders. Nat Rev Drug Discov 2005; 4: 387–398.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Scott Rodaway and all members of the bio-resources team of the School of Pharmacy and Biomedical Sciences, University of Portsmouth, for assistance with experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J J L van der Want.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gounko, N., Swinny, J., Kalicharan, D. et al. Corticotropin-releasing factor and urocortin regulate spine and synapse formation: structural basis for stress-induced neuronal remodeling and pathology. Mol Psychiatry 18, 86–92 (2013). https://doi.org/10.1038/mp.2012.43

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.43

Keywords

This article is cited by

Search

Quick links