Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genome-wide association study of monoamine metabolite levels in human cerebrospinal fluid

Abstract

Studying genetic determinants of intermediate phenotypes is a powerful tool to increase our understanding of genotype–phenotype correlations. Metabolic traits pertinent to the central nervous system (CNS) constitute a potentially informative target for genetic studies of intermediate phenotypes as their genetic underpinnings may elucidate etiological mechanisms. We therefore conducted a genome-wide association study (GWAS) of monoamine metabolite (MM) levels in cerebrospinal fluid (CSF) of 414 human subjects from the general population. In a linear model correcting for covariates, we identified one locus associated with MMs at a genome-wide significant level (standardized β=0.32, P=4.92 × 10−8), located 20 kb from SSTR1, a gene involved with brain signal transduction and glutamate receptor signaling. By subsequent whole-genome expression quantitative trait locus (eQTL) analysis, we provide evidence that this variant controls expression of PDE9A (β=0.21; Punadjusted=5.6 × 10−7; Pcorrected=0.014), a gene previously implicated in monoaminergic transmission, major depressive disorder and antidepressant response. A post hoc analysis of loci significantly associated with psychiatric disorders suggested that genetic variation at CSMD1, a schizophrenia susceptibility locus, plays a role in the ratio between dopamine and serotonin metabolites in CSF. The presented DNA and mRNA analyses yielded genome-wide and suggestive associations in biologically plausible genes, two of which encode proteins involved with glutamate receptor functionality. These findings will hopefully contribute to an exploration of the functional impact of the highlighted genes on monoaminergic transmission and neuropsychiatric phenotypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Freimer N, Sabatti C . The human phenome project. Nat Genet 2003; 34: 15–21.

    Article  CAS  Google Scholar 

  2. Bilder RM, Sabb FW, Cannon TD, London ED, Jentsch JD, Parker DS et al. Phenomics: the systematic study of phenotypes on a genome-wide scale. Neuroscience 2009; 164: 30–42.

    Article  CAS  PubMed Central  Google Scholar 

  3. Erhardt A, Czibere L, Roeske D, Lucae S, Unschuld PG, Ripke S et al. TMEM132D, a new candidate for anxiety phenotypes: evidence from human and mouse studies. Mol Psychiatry 2011; 16: 647–663.

    Article  CAS  Google Scholar 

  4. Wray NR, Pergadia ML, Blackwood DH, Penninx BW, Gordon SD, Nyholt DR et al. Genome-wide association study of major depressive disorder: new results, meta-analysis, and lessons learned. Mol Psychiatry 2012; 17: 36–48.

    Article  CAS  PubMed Central  Google Scholar 

  5. Neale BM, Medland SE, Ripke S, Asherson P, Franke B, Lesch KP et al. Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2010; 49: 884–897.

    Article  PubMed Central  Google Scholar 

  6. Owen MJ, Craddock N, Jablensky A . The genetic deconstruction of psychosis. Schizophr Bull 2007; 33: 905–911.

    Article  PubMed Central  Google Scholar 

  7. Glahn DC, Curran JE, Winkler AM, Carless MA, Kent JW, Charlesworth JC et al. High dimensional endophenotype ranking in the search for major depression risk genes. Biol Psychiatry 2012; 71: 6–14.

    Article  PubMed Central  Google Scholar 

  8. Harrison PJ, Owen MJ . Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 2003; 361: 417–419.

    Article  CAS  PubMed Central  Google Scholar 

  9. Hyland K . Clinical utility of monoamine neurotransmitter metabolite analysis in cerebrospinal fluid. Clin Chem 2008; 54: 633–641.

    Article  CAS  Google Scholar 

  10. Harrison BJ, Olver JS, Norman TR, Burrows GD, Wesnes KA, Nathan PJ . Selective effects of acute serotonin and catecholamine depletion on memory in healthy women. J Psychopharmacol 2004; 18: 32–40.

    Article  CAS  PubMed Central  Google Scholar 

  11. Kurian MA, Gissen P, Smith M, Heales S, Clayton PT . The monoamine neurotransmitter disorders: an expanding range of neurological syndromes. Lancet Neurol 2011; 10: 721–733.

    Article  CAS  Google Scholar 

  12. Naumann M, Gotz M, Reiners K, Lange KW, Riederer P . Neurotransmitters in CSF of idiopathic adult-onset dystonia: reduced 5-HIAA levels as evidence of impaired serotonergic metabolism. J Neural Transm 1996; 103: 1083–1091.

    Article  CAS  Google Scholar 

  13. Assmann B, Kohler M, Hoffmann GF, Heales S, Surtees R . Selective decrease in central nervous system serotonin turnover in children with dopa-nonresponsive dystonia. Pediat Res 2002; 52: 91–94.

    Article  CAS  Google Scholar 

  14. Freimer NB, Service SK, Ophoff RA, Jasinska AJ, McKee K, Villeneuve A et al. A quantitative trait locus for variation in dopamine metabolism mapped in a primate model using reference sequences from related species. Proc Natl Acad Sci USA 2007; 104: 15811–15816.

    Article  Google Scholar 

  15. Higley JD, Thompson WW, Champoux M, Goldman D, Hasert MF, Kraemer GW et al. Paternal and maternal genetic and environmental contributions to cerebrospinal fluid monoamine metabolites in rhesus monkeys (Macaca mulatta). Arch Gen Psychiatry 1993; 50: 615–623.

    Article  CAS  Google Scholar 

  16. Rogers J, Martin LJ, Comuzzie AG, Mann JJ, Manuck SB, Leland M et al. Genetics of monoamine metabolites in baboons: overlapping sets of genes influence levels of 5-hydroxyindolacetic acid, 3-hydroxy-4-methoxyphenylglycol, and homovanillic acid. Biol Psychiatry 2004; 55: 739–744.

    Article  CAS  PubMed Central  Google Scholar 

  17. Ducci F, Newman TK, Funt S, Brown GL, Virkkunen M, Goldman D . A functional polymorphism in the MAOA gene promoter (MAOA-LPR) predicts central dopamine function and body mass index. Mol Psychiatry 2006; 11: 858–866.

    Article  CAS  PubMed Central  Google Scholar 

  18. Jonsson EG, Norton N, Gustavsson JP, Oreland L, Owen MJ, Sedvall GC . A promoter polymorphism in the monoamine oxidase A gene and its relationships to monoamine metabolite concentrations in CSF of healthy volunteers. J Psychiatr Res 2000; 34: 239–244.

    Article  CAS  Google Scholar 

  19. Jonsson EG, Bah J, Melke J, Abou Jamra R, Schumacher J, Westberg L et al. Monoamine related functional gene variants and relationships to monoamine metabolite concentrations in CSF of healthy volunteers. BMC Psychiatry 2004; 4: 4.

    Article  PubMed Central  Google Scholar 

  20. Kishida I, Aklillu E, Kawanishi C, Bertilsson L, Agren H . Monoamine metabolites level in CSF is related to the 5-HTT gene polymorphism in treatment-resistant depression. Neuropsychopharmacology 2007; 32: 2143–2151.

    Article  CAS  Google Scholar 

  21. Luykx JJ, Vinkers CH, Bakker SC, Visser WF, van Boxmeer L, Strengman E et al. A common variant in ERBB4 regulates GABA concentrations in human cerebrospinal fluid. Neuropsychopharmacology 2012; 37: 2088–92.

    Article  CAS  PubMed Central  Google Scholar 

  22. Luykx JJ, Bakker SC, Lentjes E, Boks MP, van Geloven N, Eijkemans MJ et al. Season of sampling and season of birth influence serotonin metabolite levels in human cerebrospinal fluid. PLoS One 2012; 7: e30497.

    Article  CAS  PubMed Central  Google Scholar 

  23. Gieger C, Geistlinger L, Altmaier E, Hrabe de Angelis M, Kronenberg F, Meitinger T et al. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS Genet 2008; 4: e1000282.

    Article  PubMed Central  Google Scholar 

  24. Suhre K, Wallaschofski H, Raffler J, Friedrich N, Haring R, Michael K et al. A genome-wide association study of metabolic traits in human urine. Nat Genet 2011; 43: 565–569.

    Article  CAS  Google Scholar 

  25. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed Central  Google Scholar 

  26. Browning SR, Browning BL . Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 2007; 81: 1084–1097.

    Article  CAS  PubMed Central  Google Scholar 

  27. Howie BFC, Stephens M, Marchini J, Abecasis GR . Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet 2012; 44: 955–9.

    Article  CAS  PubMed Central  Google Scholar 

  28. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR . MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 2010; 34: 816–834.

    Article  PubMed Central  Google Scholar 

  29. Johansson B, Roos BE . Concentrations of monoamine metabolites in human lumbar and cisternal cerebrospinal fluid. Acta Neurol Scand 1975; 52: 137–144.

    Article  CAS  Google Scholar 

  30. Malm J, Kristensen B, Ekstedt J, Wester P . CSF concentration gradients of monoamine metabolites in patients with hydrocephalus. J Neurol Neurosurg Psychiatry 1994; 57: 1026–1033.

    Article  CAS  PubMed Central  Google Scholar 

  31. Dudbridge F, Gusnanto A . Estimation of significance thresholds for genomewide association scans. Genet Epidemiol 2008; 32: 227–234.

    Article  PubMed Central  Google Scholar 

  32. Purcell S, Cherny SS, Sham PC . Genetic power calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 2003; 19: 149–150.

    Article  CAS  Google Scholar 

  33. Du P, Kibbe WA, Lin SM . lumi: a pipeline for processing Illumina microarray. Bioinformatics 2008; 24: 1547–1548.

    Article  CAS  Google Scholar 

  34. Lin SM, Du P, Huber W, Kibbe WA . Model-based variance-stabilizing transformation for Illumina microarray data. Nucleic Acids Res 2008; 36: e11.

    Article  PubMed Central  Google Scholar 

  35. Smyth GK . Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004; 3, Article 3.

    Article  Google Scholar 

  36. Smyth GK . Limma: linear models for microarray data. In: R Gentleman, V Carey, S Dudoit, R Irizarry, W Huber eds. Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Springer: New York, 2005 pp 397–420.

    Chapter  Google Scholar 

  37. Lu AT, Bakker S, Janson E, Cichon S, Cantor RM, Ophoff RA . Prediction of serotonin transporter promoter polymorphism genotypes from single nucleotide polymorphism arrays using machine learning methods. Psychiatr Genet 2012; 22: 182–188.

    Article  Google Scholar 

  38. Haavik J, Blau N, Thony B . Mutations in human monoamine-related neurotransmitter pathway genes. Hum Mutat 2008; 29: 891–902.

    Article  CAS  PubMed Central  Google Scholar 

  39. Ripke S, Sanders AR, Kendler KS, Levinson DF, Sklar P, Holmans PA et al. Genome-wide association study identifies five new schizophrenia loci. Nat Genet 2011; 43: 969–976.

    Article  CAS  Google Scholar 

  40. Kleiman RJ, Chapin DS, Christoffersen C, Freeman J, Fonseca KR, Geoghegan KF et al. Phosphodiesterase 9A regulates central cGMP and modulates responses to cholinergic and monoaminergic perturbation in vivo. J Pharmacol Exp Ther 2012; 341: 396–409.

    Article  CAS  Google Scholar 

  41. Bruno JF, Xu Y, Song J, Berelowitz M . Molecular cloning and functional expression of a brain-specific somatostatin receptor. Proc Natl Acad Sci USA 1992; 89: 11151–11155.

    Article  CAS  Google Scholar 

  42. Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, Heckers S et al. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends Neurosci 2008; 31: 234–242.

    Article  CAS  PubMed Central  Google Scholar 

  43. Lee MT, Chen CH, Lee CS, Chen CC, Chong MY, Ouyang WC et al. Genome-wide association study of bipolar I disorder in the Han Chinese population. Mol Psychiatry 2011; 16: 548–556.

    Article  CAS  Google Scholar 

  44. LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ . Dopamine covalently modifies and functionally inactivates parkin. Nat Med 2005; 11: 1214–1221.

    Article  CAS  Google Scholar 

  45. Glessner JT, Wang K, Cai G, Korvatska O, Kim CE, Wood S et al. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature 2009; 459: 569–573.

    Article  CAS  PubMed Central  Google Scholar 

  46. Havik B, Le Hellard S, Rietschel M, Lybaek H, Djurovic S, Mattheisen M et al. The complement control-related genes CSMD1 and CSMD2 associate to schizophrenia. Biol Psychiatry 2011; 70: 35–42.

    Article  CAS  Google Scholar 

  47. Edwards AC, Aliev F, Bierut LJ, Bucholz KK, Edenberg H, Hesselbrock V et al. Genome-wide association study of comorbid depressive syndrome and alcohol dependence. Psychiatr Genet 2012; 22: 31–41.

    Article  CAS  PubMed Central  Google Scholar 

  48. Kim HG, Kishikawa S, Higgins AW, Seong IS, Donovan DJ, Shen Y et al. Disruption of neurexin 1 associated with autism spectrum disorder. Am J Hum Genet 2008; 82: 199–207.

    Article  CAS  PubMed Central  Google Scholar 

  49. Finn JT, Grunwald ME, Yau KW . Cyclic nucleotide-gated ion channels: an extended family with diverse functions. Annu Rev Physiol 1996; 58: 395–426.

    Article  CAS  Google Scholar 

  50. Menniti FS, Faraci WS, Schmidt CJ . Phosphodiesterases in the CNS: targets for drug development. Nat Rev Drug Discov 2006; 5: 660–670.

    Article  CAS  Google Scholar 

  51. Reierson GW, Mastronardi CA, Licinio J, Wong ML . Repeated antidepressant therapy increases cyclic GMP signaling in rat hippocampus. Neurosci Lett 2009; 466: 149–153.

    Article  CAS  PubMed Central  Google Scholar 

  52. Takahashi M, Terwilliger R, Lane C, Mezes PS, Conti M, Duman RS . Chronic antidepressant administration increases the expression of cAMP-specific phosphodiesterase 4A and 4B isoforms. Neurosci 1999; 19: 610–618.

    Article  CAS  Google Scholar 

  53. Reierson GW, Guo S, Mastronardi C, Licinio J, Wong ML . cGMP signaling, phosphodiesterases and major depressive disorder. Curr Neuropharmacol 2011; 9: 715–727.

    Article  CAS  PubMed Central  Google Scholar 

  54. Wong ML, Whelan F, Deloukas P, Whittaker P, Delgado M, Cantor RM et al. Phosphodiesterase genes are associated with susceptibility to major depression and antidepressant treatment response. Proc Natl Acad Sci USA 2006; 103: 15124–15129.

    Article  CAS  Google Scholar 

  55. Esposito K, Reierson GW, Luo HR, Wu GS, Licinio J, Wong ML . Phosphodiesterase genes and antidepressant treatment response: a review. Ann Med 2009; 41: 177–185.

    Article  CAS  PubMed Central  Google Scholar 

  56. van Staveren WC, Glick J, Markerink-van Ittersum M, Shimizu M, Beavo JA, Steinbusch HW et al. Cloning and localization of the cGMP-specific phosphodiesterase type 9 in the rat brain. J Neurocytol 2002; 31: 729–741.

    Article  CAS  Google Scholar 

  57. Andreeva SG, Dikkes P, Epstein PM, Rosenberg PA . Expression of cGMP-specific phosphodiesterase 9A mRNA in the rat brain. J Neurosci 2001; 21: 9068–9076.

    Article  CAS  Google Scholar 

  58. Wunder F, Tersteegen A, Rebmann A, Erb C, Fahrig T, Hendrix M . Characterization of the first potent and selective PDE9 inhibitor using a cGMP reporter cell line. Mol Pharmacol 2005; 68: 1775–1781.

    CAS  PubMed  Google Scholar 

  59. Verhoest PR, Proulx-Lafrance C, Corman M, Chenard L, Helal CJ, Hou X et al. Identification of a brain penetrant PDE9A inhibitor utilizing prospective design and chemical enablement as a rapid lead optimization strategy. J Med Chem 2009; 52: 7946–7949.

    Article  CAS  Google Scholar 

  60. Hutson PH, Finger EN, Magliaro BC, Smith SM, Converso A, Sanderson PE et al. The selective phosphodiesterase 9 (PDE9) inhibitor PF-04447943 (6-[(3S,4S)-4-methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(tetrahydro-2H-py ran-4-yl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one) enhances synaptic plasticity and cognitive function in rodents. Neuropharmacology 2011; 61: 665–676.

    Article  CAS  Google Scholar 

  61. Small KS, Hedman AK, Grundberg E, Nica AC, Thorleifsson G, Kong A et al. Identification of an imprinted master trans regulator at the KLF14 locus related to multiple metabolic phenotypes. Nat Genet 2011; 43: 561–564.

    Article  CAS  PubMed Central  Google Scholar 

  62. Grieve IC, Dickens NJ, Pravenec M, Kren V, Hubner N, Cook SA et al. Genome-wide co-expression analysis in multiple tissues. PLoS One 2008; 3: e4033.

    Article  PubMed Central  Google Scholar 

  63. Glinskii AB, Ma J, Ma S, Grant D, Lim CU, Sell S et al. Identification of intergenic trans-regulatory RNAs containing a disease-linked SNP sequence and targeting cell cycle progression/differentiation pathways in multiple common human disorders. Cell Cycle 2009; 8: 3925–3942.

    Article  CAS  Google Scholar 

  64. Kettunen J, Tukiainen T, Sarin AP, Ortega-Alonso A, Tikkanen E, Lyytikainen LP et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat Genet 2012; 44: 269–276.

    Article  CAS  PubMed Central  Google Scholar 

  65. Dunn WB, Broadhurst DI, Atherton HJ, Goodacre R, Griffin JL . Systems level studies of mammalian metabolomes: the roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Soc Rev 2011; 40: 387–426.

    Article  CAS  Google Scholar 

  66. Hetsroni I, Lyman S, Do H, Mann G, Marx RG . Symptomatic pulmonary embolism after outpatient arthroscopic procedures of the knee: the incidence and risk factors in 418,323 arthroscopies. J Bone Joint Surg Br 2011; 93: 47–51.

    Article  CAS  Google Scholar 

  67. Luykx JJ, Laban KG, van den Heuvel MP, Boks MP, Mandl RC, Kahn RS et al. Region and state specific glutamate downregulation in major depressive disorder: a meta-analysis of (1)H-MRS findings. Neurosci Biobehav Rev 2012; 36: 198–205.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R A Ophoff.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

The following URLs were used for statistical analyses, to generate plots and as information resources:

http://csg.sph.umich.edu/locuszoom/ http://genome.ucsc.edu/ http://www.ncbi.nlm.nih.gov/pubmed/ http://www.r-project.org http://www.broadinstitute.org/mammals/haploreg

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luykx, J., Bakker, S., Lentjes, E. et al. Genome-wide association study of monoamine metabolite levels in human cerebrospinal fluid. Mol Psychiatry 19, 228–234 (2014). https://doi.org/10.1038/mp.2012.183

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2012.183

Keywords

This article is cited by

Search

Quick links