Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

Role of the evolutionarily conserved starvation response in anorexia nervosa

Abstract

This review will summarize recent findings concerning the biological regulation of starvation as it relates to anorexia nervosa (AN), a serious eating disorder that mainly affects female adolescents and young adults. AN is generally viewed as a psychosomatic disorder mediated by obsessive concerns about weight, perfectionism and an overwhelming desire to be thin. By contrast, the thesis that will be developed here is that, AN is primarily a metabolic disorder caused by defective regulation of the starvation response, which leads to ambivalence towards food, decreased food consumption and characteristic psychopathology. We will trace the starvation response from yeast to man and describe the central role of insulin (and insulin-like growth factor-1 (IGF-1))/Akt/ F-box transcription factor (FOXO) signaling in this response. Akt is a serine/threonine kinase downstream of the insulin and IGF-1 receptors, whereas FOXO refers to the subfamily of Forkhead box O transcription factors, which are regulated by Akt. We will also discuss how initial bouts of caloric restriction may alter the production of neurotransmitters that regulate appetite and food-seeking behavior and thus, set in motion a vicious cycle. Finally, an integrated approach to treatment will be outlined that addresses the biological aspects of AN.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Fairburn CG, Harrison PJ . Eating disorders. Lancet 2003; 361: 407–416.

    Article  PubMed  Google Scholar 

  2. Treasure JL . Getting beneath the phenotype of anorexia nervosa: the search for viable endophenotypes and genotypes. Can J Psychiatry 2007; 52: 212–219.

    Article  PubMed  Google Scholar 

  3. Bulik CM, Slof-Op’t Landt MCT, van Furth EF, Sullivan PF . The genetics of anorexia nervosa. Annu Rev Nutr 2007; 27: 263–275.

    Article  CAS  PubMed  Google Scholar 

  4. Zandian M, Ioakimidis I, Bergh C, Södersten P . Cause and treatment of anorexia nervosa. Physiol Behav 2007; 92: 283–290.

    Article  CAS  PubMed  Google Scholar 

  5. Morris J, Twaddle S . Anorexia nervosa. Br Med J 2008; 334: 894–898.

    Article  Google Scholar 

  6. Keel PK, Klump KL . Are eating disorders culture-bound syndromes? Implications for conceptualizing their etiology. Psychol Bull 2003; 129: 747–769.

    Article  PubMed  Google Scholar 

  7. Hoek HW . Incidence, prevalence and mortality of anorexia nervosa and other eating disorders. Curr Opin Psychiatry 2006; 19: 389–394.

    Article  PubMed  Google Scholar 

  8. Robergeau K, Joseph J, Silber TJ . Hospitalization of children and adolescents for eating disorders in the State of New York. J Adolesc Health 2006; 39: 806–810.

    Article  PubMed  Google Scholar 

  9. Keys A, Brozek J, Henschel A, Mickelsen O, Taylor HL . The Biology of Human Starvation. University of Minnesota Press: Minneapolis, MN, 1950.

    Book  Google Scholar 

  10. Wang T, Hung CC, Randall DJ . The comparative physiology of food deprivation: from feast to famine. Annu Rev Physiol 2006; 68: 223–251.

    Article  PubMed  CAS  Google Scholar 

  11. Emery PW . Metabolic changes in malnutrition. Eye 2005; 19: 1029–1034.

    Article  CAS  PubMed  Google Scholar 

  12. Schwartz MW, Dallman MF, Woods SC . Hypothalamic response to starvation: implications for the study of wasting disorders. Am J Physiol 1995; 269: R949–R957.

    CAS  PubMed  Google Scholar 

  13. Barbieri M, Bonafe M, Franceschi C, Paolisso G . Insulin/IGF-1 signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am J Physiol 2003; 285: E1064–E1071.

    Article  CAS  Google Scholar 

  14. Mazet F, Yu JK, Liberles DA, Holland LZ, Shimeld SM . Phylogenetic relationships of the Fox (Forkhead) gene family in the Bilateria. Gene 2003; 316: 79–89.

    Article  CAS  PubMed  Google Scholar 

  15. Kaufmann E, Knöchel W . Five years on the wings of fork head. Mec Dev 1996; 57: 3–20.

    Article  CAS  Google Scholar 

  16. Van der Heide LP, Hoekman MF, Smidt MP . The ins and outs of FoxO shuttling: mechanisms of FoxO translocation and transcriptional regulation. Biochem J 2004; 380: 297–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang H, Tindall DJ . Dynamic FoxO transcription factors. J Cell Sci 2007; 120: 2479–2487.

    Article  CAS  PubMed  Google Scholar 

  18. Gimeno CJ, Ljungdahl PO, Styles CA, Fink GR . Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 1992; 68: 1077–1090.

    Article  CAS  PubMed  Google Scholar 

  19. Zhu G, Spellman PT, Volpe T, Brown PO, Botstein D, Davis TN et al. Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature 2000; 406: 90–94.

    Article  CAS  PubMed  Google Scholar 

  20. Szilagyi Z, Batta G, Enczi K, Sipiczki M . Characterisation of two novel fork head gene homologues of Schizosaccharomyces pombe: their involvement in cell cycle and sexual differentiation. Gene 2005; 348: 101–109.

    Article  CAS  PubMed  Google Scholar 

  21. Pramila T, Wu W, Miles S, Noble WS, Breeden LL . The Forkhead transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phase gap in the transcriptional circuitry of the cell cycle. Genes Dev 2006; 20: 2266–2278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dwyer DS, Donohoe DR, Aamodt EJ . Insulin/IGF-1 signaling in C. elegans regulates foraging and feeding. Soc Neurosci Abstr Online 2009 Program No. 275.18.

  23. Mohri A, Kodama E, Kimura KD, Koike M, Mizuno T, Mori I . Genetic control of temperature preference in the nematode Caenorhabditis elegans. Genetics 2005; 169: 1437–1450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kodama E, Kuhara A, Mohri-Shiomi A, Kimura KD, Okumura M, Tomioka M et al. Insulin-like signaling and the neural circuit for integrative behavior in C.elegans. Genes Dev 2006; 20: 2955–2960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. You Y, Kim J, Raizen DM, Avery L . Insulin, cGMP, and TGF-β signals regulate food intake and quiescence in C. elegans: a model for satiety. Cell Metab 2008; 7: 249–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Aschenbrenner K, Scholze N, Joraschky P, Hummel T . Gustatory and olfactory sensitivity in patients with anorexia and bulimia in the course of treatment. J Psychiatry Res 2008; 43: 129–137.

    Article  Google Scholar 

  27. Roessner V, Bleich S, Banaschewski T, Rothenburger A . Olfactory deficits in anorexia nervosa. Eur Arch Psychiatry Clin Neurosci 2005; 255: 6–9.

    Article  PubMed  Google Scholar 

  28. Fedoroff IC, Stoner SA, Andersen AE, Doty RL, Rolls BJ . Olfactory dysfunction in anorexia and bulimia nervosa. Int J Eat Disord 1995; 18: 71–77.

    Article  CAS  PubMed  Google Scholar 

  29. Rousseaux M, Muller P, Gahide I, Mottin Y, Romon M . Disorders of smell, taste and food intake in a patient with a dorsomedial thalamic infarct. Stroke 1996; 27: 2328–2330.

    Article  CAS  PubMed  Google Scholar 

  30. Gray JM, Hill JJ, Bargmann CI . A circuit for navigation in Caenorhabditis elegans. Proc Natl Acad Sci USA 2005; 102: 3184–3191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wakabayashi T, Osada T, Shingai R . Serotonin deficiency shortens the duration of forward movement in Caenorhabditis elegans. Biosci Biotechnol Biochem 2005; 69: 1767–1770.

    Article  CAS  PubMed  Google Scholar 

  32. Donohoe DR, Phan T, Weeks K, Aamodt EJ, Dwyer DS . Antipsychotic drugs up-regulate tryptophan hydroxylase in ADF neurons of Caenorhabditis elegans: role of calcium-calmodulin-dependent protein kinase II and transient receptor potential vanilloid channel. J Neurosci Res 2008; 86: 2553–2563.

    Article  CAS  PubMed  Google Scholar 

  33. Hills T, Brockie PJ, Maricq AV . Dopamine and glutamate control area-restricted search behavior in Caenorhabditis elegans. J Neurosci 2004; 24: 1217–1225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Meguid MM, Fetissov SO, Varma M, Sato T, Zhang L, Laviano A et al. Hypothalamic dopamine and serotonin in the regulation of food intake. Nutrition 2000; 16: 843–857.

    Article  CAS  PubMed  Google Scholar 

  35. Kramer JM, Davidge JT, Lockyer JM, Staveley BE . Expression of Drosophila FOXO regulates growth and can phenocopy starvation. BMC Dev Biol 2003; 3: 1–14.

    Article  Google Scholar 

  36. Britton JS, Lockwood WK, Li L, Cohen SM, Edgar BA . Drosophila's insulin/PI3-kinase pathway coordinates cellular metabolism with nutritional conditions. Dev Cell 2002; 2: 239–249.

    Article  CAS  PubMed  Google Scholar 

  37. Son JH, Baker H, Park DH, Joh TH . Drastic and selective hyperinnervation of central serotonergic neurons in a lethal neurodevelopmental mouse mutant, Anorexia (anx). Mol Brain Res 1994; 25: 129–134.

    Article  CAS  PubMed  Google Scholar 

  38. Tecott LH, Sun LM, Akana SF, Strack AM, Lowenstein DH, Dallman MF et al. Eating disorder and epilepsy in mice lacking 5-HT2C serotonin receptors. Nature 1995; 374: 542–546.

    Article  CAS  PubMed  Google Scholar 

  39. Zhou QY, Palmiter RD . Dopamine-deficient mice are severely hypoactive, adipsic and aphagic. Cell 1995; 83: 1197–1209.

    Article  CAS  PubMed  Google Scholar 

  40. Yamada M, Miyakawa T, Duttaroy A, Yamanaka A, Moriguchi T, Makita R et al. Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature 2001; 410: 207–212.

    Article  CAS  PubMed  Google Scholar 

  41. Gautam D, Han S-J, Duttaroy A, Mears D, Hamdan FF, Li JH et al. Role of the M3 muscarinic acetylcholine receptor in β-cell function and glucose homeostasis. Diabetes Obes Metab 2007; 9 (Suppl 2): 158–169.

    Article  PubMed  CAS  Google Scholar 

  42. Liang B, Moussaif M, Kuan C, Gargus JJ, Sze JY . Serotonin targets the DAF-16/FOXO signaling pathway to modulate stress responses. Cell Metab 2006; 4: 429–440.

    Article  CAS  PubMed  Google Scholar 

  43. Burks DJ, de Mora JF, Schubert M, Withers DJ, Myers MG, Towery HH et al. IRS-2 pathways integrate female reproduction and energy homeostasis. Nature 2000; 407: 377–382.

    Article  CAS  PubMed  Google Scholar 

  44. Stoving RK, Chen J-W, Glintborg D, Brixen K, Flyvberg A, Horder K, Frystyk J . Bioactive insulin-like growth factor (IGF) I and IGF-binding protein-1 in anorexia nervosa. J Clin Endocrinol Metab 2007; 92: 2323–2329.

    Article  PubMed  CAS  Google Scholar 

  45. Boonstra VH, Arends NJ, Stijnen T, Blum WF, Akkerman O, Hokken-Koelega AC . Food intake of children with short stature born small for gestational age before and during a randomized GH trial. Hormone Res 2006; 65: 23–30.

    Article  CAS  PubMed  Google Scholar 

  46. Plum L, Schubert M, Bruning JC . The role of insulin receptor signaling in the brain. Trends Endocrinol Metab 2005; 16: 59–65.

    Article  CAS  PubMed  Google Scholar 

  47. Phillips LS, Harp JB, Goldstein S, Klein J, Pao C-I . Regulation and action of insulin-like growth factors at the cellular level. Proc Nutr Soc 1990; 49: 451–458.

    Article  CAS  PubMed  Google Scholar 

  48. Brismar K, Fernqvist-Forbes E, Wahren J, Hall K . Effect of insulin on the hepatic production of insulin-like growth factor-binding protein-1 (IGFBP-1), IGFBP-3, and IGF-1 in insulin-dependent diabetes. J Clin Endocrinol Metab 1994; 79: 872–878.

    CAS  PubMed  Google Scholar 

  49. Satoh M, Yoshizawa A, Takesue M, Saji T, Yokoya S . Long-term effects of recombinant human insulin-like growth factor I treatment on glucose and lipid metabolism and the growth of a patient with congenital generalized lipodystrophy. Endocrine J 2006; 53: 639–645.

    Article  CAS  Google Scholar 

  50. Greer EL, Oskoui PR, Banko MR, Maniar JM, Gygi MP, Gygi SP et al. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J Biol Chem 2007; 282: 30107–30119.

    Article  CAS  PubMed  Google Scholar 

  51. Hardie DG, Scott JW, Pan DA, Hudson ER . Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett 2003; 546: 113–120.

    Article  CAS  PubMed  Google Scholar 

  52. Kola B . Role of AMP-activated protein kinase in the control of appetite. J Neuroendocrinol 2008; 20: 942–951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Minokoshi Y, Alquier T, Furukawa N, Kim Y-B, Lee A, Xue B et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 2004; 428: 569–574.

    Article  CAS  PubMed  Google Scholar 

  54. Sarbassov DD, Ali SM, Sabatini DM . Growing roles for the mTOR pathway. Curr Opin Cell Biol 2005; 17: 596–603.

    Article  CAS  PubMed  Google Scholar 

  55. Shaw RJ . LKB1 and AMP-activated protein kinase control of mTOR signaling and growth. Acta Physiol 2009; 196: 65–80.

    Article  CAS  Google Scholar 

  56. Selman C, Tullet JM, Wieser D, Irvine E, Lingard SJ, Choudhury AI et al. Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 2009; 326: 140–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jia K, Chen D, Riddle DL . The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 2004; 131: 3897–3906.

    Article  CAS  PubMed  Google Scholar 

  58. Estevez AO, Cowie RH, Gardner KL, Estevez M . Both insulin and calcium channel signaling are required for developmental regulation of serotonin synthesis in the chemosensory ADF neurons of Caenorhabditis elegans. Dev Biol 2006; 298: 32–44.

    Article  CAS  PubMed  Google Scholar 

  59. Ferri AL, Lin W, Mavromatakis YE, Sasaki H, Whitsett JA, Ang S-L . Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron development in a dosage-dependent manner. Development 2007; 134: 2761–2769.

    Article  CAS  PubMed  Google Scholar 

  60. Kim M-S, Pak YK, Jang P-G, Namkoong C, Choi Y-S, Won J-C et al. Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis. Nat Neurosci 2006; 9: 901–906.

    Article  CAS  PubMed  Google Scholar 

  61. Weinkove D, Halstead JR, Gems D, Divecha N . Long-term starvation and ageing induce AGE-1/PI3-kinase-dependent translocation of DAF-16/FOXO to the cytoplasm. BMC Biol 2006; 4: 1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Coburn CM, Mori I, Ohshima Y, Bargmann CI . A cyclic nucleotide-gated channel inhibits sensory axon outgrowth in larval and adult Caenorhabditis elegans: a distinct pathway for maintenance of sensory axon structure. Development 1998; 125: 249–258.

    CAS  PubMed  Google Scholar 

  63. Riediger T, Giannini P, Erguven E, Lutz T . Nitric oxide directly inhibits ghrelin-activated neurons of the arcuate nucleus. Brain Res 2006; 1125: 37–45.

    Article  CAS  PubMed  Google Scholar 

  64. Bulik CM, Sullivan PF, Tozzi F, Furberg H, Lichtenstein P, Pedersen NL . Prevalence, heritability, and prospective risk factors for anorexia nervosa. Arch Gen Psychiatry 2006; 63: 305–312.

    Article  PubMed  Google Scholar 

  65. Bacanu S-A, Bulik CM, Klump KL, Fichter MM, Halmi KA, Keel P et al. Linkage analysis of anorexia and bulimia nervosa cohorts using selected behavioral phenotypes as quantitative traits or covariates. Am J Med Genet B 2005; 139B: 61–68.

    Article  CAS  Google Scholar 

  66. Devlin B, Bacan S-A, Klump KL, Bulik CM, Fichter MM, Halmi KA et al. Linkage analysis of anorexia nervosa incorporating behavioral covariates. Hum Mol Genet 2002; 11: 689–696.

    Article  CAS  PubMed  Google Scholar 

  67. Grice DE, Halmi KA, Fichter MM, Strober M, Woodside DB, Treasure JT et al. Evidence for a susceptibility gene for anorexia nervosa on chromosome 1. Am J Hum Genet 2002; 70: 787–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bergen AW, van den Bree MB, Yeager M, Welch R, Ganjei JK, Haque K et al. Candidate genes for anorexia nervosa in the 1p33-36 linkage region: serotonin 1D and delta opioid receptor loci exhibit significant association to anorexia nervosa. Mol Psychiatry 2003; 8: 397–406.

    Article  CAS  PubMed  Google Scholar 

  69. Chagnon YC, Borecki IB, Perusse L, Roy S, Lacaille M, Chagnon M et al. Genome-wide search for genes related to the fat-free body mass in the Quebec Family Study. Metabolism 2000; 49: 203–207.

    Article  CAS  PubMed  Google Scholar 

  70. Wauman J, De Smet A, Catteeuw D, Belsham D, Tavernier J . Insulin receptor substrate 4 couples the leptin receptor to multiple signaling pathways. Mol Endocrinol 2008; 22: 965–977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bergh C, Södersten P . Anorexia nervosa, self-starvation and the reward of stress. Nat Med 1996; 2: 21–22.

    Article  CAS  PubMed  Google Scholar 

  72. Fessler DMT . The implications of starvation induced psychological changes for the ethical treatment of hunger strikers. J Med Ethics 2003; 29: 243–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Korbonits M, Blaine D, Elia M, Powell-Tuck J . Metabolic and hormonal changes during the refeeding period of prolonged fasting. Eur J Endocrinol 2007; 157: 157–166.

    Article  CAS  PubMed  Google Scholar 

  74. Keel PK, Haedt A . Evidence-based psychosocial treatments for eating problems and eating disorders. J Clin Child Adolesc Psychol 2008; 37: 39–61.

    Article  PubMed  Google Scholar 

  75. Bowers WA . Basic principles for applying cognitive-behavioral therapy to anorexia nervosa. Psychiatr Clin North Am 2001; 24: 293–303.

    Article  CAS  PubMed  Google Scholar 

  76. Eisler I, Dare C, Hodes M, Russell G, Dodge E, le Grange D . Family therapy for adolescent anorexia nervosa: the results of a controlled comparison of two family interventions. J Child Psychol Psychiatry 2000; 41: 727–736.

    Article  CAS  PubMed  Google Scholar 

  77. Bulik CM, Berkman ND, Brownley KA, Sedway JA, Lohr KN . Anorexia nervosa treatment: a systematic review of randomized controlled trials. Int J Eat Disord 2007; 40: 310–320.

    Article  PubMed  Google Scholar 

  78. Fisher CA, Hetrick SE, Rushford N . Family therapy for anorexia nervosa. Cochrane Database Syst Rev 2010; 4: CD004780.

    Google Scholar 

  79. Zhu AJ, Walsh BT . Pharmacologic treatment of eating disorders. Can J Psychiatry 2002; 47: 227–234.

    Article  PubMed  Google Scholar 

  80. Ratzoni G, Gothelf D, Brand-Gothelf A, Reidman J, Kikinzon L, Gal G et al. Weight gain associated with olanzapine and risperidone in adolescent patients: a comparative prospective study. J Am Acad Child Adolesc Psychiatry 2002; 41: 337–343.

    Article  PubMed  Google Scholar 

  81. Dwyer DS, Weeks K, Aamodt EJ . Drug discovery based on genetic and metabolic findings in schizophrenia. Expert Rev Clin Pharmacol 2008; 1: 773–789.

    Article  CAS  PubMed  Google Scholar 

  82. Dwyer DS, Donohoe D, Lu X-H, Aamodt EJ . Mechanistic connections between glucose/lipid disturbances and weight gain induced by antipsychotic drugs. Int Rev Neurobiol 2005; 65: 211–247.

    Article  CAS  PubMed  Google Scholar 

  83. Mehler C, Wewetzer C, Schulze U, Warnke A, Theisen F, Dittmann RW . Olanzapine in children and adolescents with chronic anorexia nervosa. A study of five cases. Eur Child Adolesc Psychiatry 2001; 10: 151–157.

    Article  CAS  PubMed  Google Scholar 

  84. Bissada H, Tasca GA, Barber AM, Bradwejn J . Olanzapine in the treatment of low body weight and obsessive thinking in women with anorexia nervosa: a randomized, double-blind, placebo-controlled trial. Am J Psychiatry 2008; 165: 1281–1288.

    Article  PubMed  Google Scholar 

  85. Grinspoon S, Thomas L, Miller K, Herzog D, Klibanski A . Effects of recombinant human IGF-1 and oral contraceptive administration on bone density in anorexia nervosa. J Clin Endocrinol Metab 2002; 87: 2883–2891.

    Article  CAS  PubMed  Google Scholar 

  86. Misra M, McGrane J, Miller KK, Goldstein MA, Ebrahimi S, Weigel T et al. Effects of rhIGF-1 administration on surrogate markers of bone turnover in adolescents with anorexia nervosa. Bone 2009; 45: 493–498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Clark RG . Recombinant human insulin-like growth factor 1 (IGF-1): risks and benefits of normalizing blood IGF-1 concentrations. Hormone Res 2004; 62 (Suppl 1): 93–100.

    Article  CAS  PubMed  Google Scholar 

  88. Rosenbloom AL . Mecasermin (recombinant human insulin-like growth factor I). Adv Ther 2009; 26: 40–54.

    Article  CAS  PubMed  Google Scholar 

  89. Shekhar A, Potter WZ, Lightfoot J, Lienemann J, Dube S, Mallinckrodt C et al. Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am J Psychiatry 2008; 165: 1033–1039.

    Article  PubMed  Google Scholar 

  90. Bodick NC, Offen WW, Levey AI, Cutler NR, Gauthier SG, Satlin A et al. Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol 1997; 54: 465–473.

    Article  CAS  PubMed  Google Scholar 

  91. Dubois A, Gross HA, Richter JE, Ebert MH . Effect of bethanechol on gastric functions in primary anorexia nervosa. Digest Dis Sci 1981; 26: 598–600.

    Article  CAS  PubMed  Google Scholar 

  92. You Y, Kin J, Cobb M, Avery L . Starvation activates MAP kinase through the muscarinic acetylcholine pathway in Caenorhabditis elegans pharynx. Cell Metab 2006; 3: 237–245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tissenbaum HA, Hawdon J, Perregaux M, Hotez P, Guarente L, Ruvkun G . A common muscarinic pathway for diapause recovery in the distantly related nematode species Caenorhabditis elegans and Ancylostoma caninum. Proc Natl Acad Sci USA 2000; 97: 460–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Altar CA, Hunt RA, Jurata LW, Webster MJ, Derby E, Gallagher P et al. Insulin, IGF-1, and muscarinic agonists modulate schizophrenia-associated genes in human neuroblastoma cells. Biol Psychiatry 2008; 64: 1077–1087.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Edward P Stiles Trust Fund (LSUHSC) and Biomedical Research Foundation of Northwest Louisiana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D S Dwyer.

Ethics declarations

Competing interests

Dr Dwyer's and Dr Aamodt's research has been funded by the NIH. Dr Dwyer has previously consulted for Eli Lilly and Co. and received compensation. Drs Aamodt and Horton declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dwyer, D., Horton, R. & Aamodt, E. Role of the evolutionarily conserved starvation response in anorexia nervosa. Mol Psychiatry 16, 595–603 (2011). https://doi.org/10.1038/mp.2010.95

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2010.95

Keywords

This article is cited by

Search

Quick links