Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Urocortin-1 and -2 double-deficient mice show robust anxiolytic phenotype and modified serotonergic activity in anxiety circuits

A Corrigendum to this article was published on 24 March 2010

Abstract

The urocortin (Ucn) family of neuropeptides is suggested to be involved in homeostatic coping mechanisms of the central stress response through the activation of corticotropin-releasing factor receptor type 2 (CRFR2). The neuropeptides, Ucn1 and Ucn2, serve as endogenous ligands for the CRFR2, which is highly expressed by the dorsal raphe serotonergic neurons and is suggested to be involved in regulating major component of the central stress response. Here, we describe genetically modified mice in which both Ucn1 and Ucn2 are developmentally deleted. The double knockout mice showed a robust anxiolytic phenotype and altered hypothalamic–pituitary–adrenal axis activity compared with wild-type mice. The significant reduction in anxiety-like behavior observed in these mice was further enhanced after exposure to acute stress, and was correlated with the levels of serotonin and 5-hydroxyindoleacetic acid measured in brain regions associated with anxiety circuits. Thus, we propose that the Ucn/CRFR2 serotonergic system has an important role in regulating homeostatic equilibrium under challenge conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Sutton RE, Koob GF, LeMoal M, Rivier J, Vale WW . Corticotropin-releasing factor (CRF) produces behavioral activation in rats. Nature 1982; 297: 331–333.

    Article  CAS  PubMed  Google Scholar 

  2. Heinrichs SC, Koob GF . Corticotropin-releasing factor in the brain: a role in activation, arousal, and affect regulation. J Pharmacol Exp Ther 2004; 311: 427–440.

    Article  CAS  PubMed  Google Scholar 

  3. Bale TL, Vale WW . CRF and CRF receptors: role in stress responsivity and other behaviors. Annu Rev Pharmacol Toxicol 2004; 44: 525–557.

    Article  CAS  PubMed  Google Scholar 

  4. de Kloet ER, Joëls M, Holsboer F . Stress and the brain: from adaptation to disease. Nat Rev Neurosci 2005; 6: 463–475.

    Article  CAS  PubMed  Google Scholar 

  5. Chrousos GP, Gold PW . The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 1992; 267: 1244–1252.

    Article  CAS  PubMed  Google Scholar 

  6. Holsboer F . The rationale for corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety. J Psychiatr Res 1999; 33: 181–214.

    Article  CAS  PubMed  Google Scholar 

  7. Holmes A, Heilig M, Rupniak NM, Steckler T, Griebel G . Neuropeptide systems as novel therapeutic targets for depression and anxiety disorders. Trends Pharmacol Sci 2003; 24: 580–588.

    Article  CAS  PubMed  Google Scholar 

  8. Bale TL . Sensitivity to stress: dysregulation of CRF pathways and disease development. Horm Behav 2005; 48: 1–10.

    Article  CAS  PubMed  Google Scholar 

  9. Lowry CA . Functional subsets of serotonergic neurons: implications for control of the hypothalamic-pituitary-adrenal axis. J Neuroendocrinol 2002; 14: 911–923.

    Article  CAS  PubMed  Google Scholar 

  10. Dinan TG . Serotonin and the regulation of hypothalamic-pituitary-adrenal axis function. Life Sci 1996; 58: 1683–1694.

    Article  CAS  PubMed  Google Scholar 

  11. Carrasco GA, Van de Kar LD . Neuroendocrine pharmacology of stress. Eur J Pharmacol 2003; 463: 235–272.

    CAS  PubMed  Google Scholar 

  12. Lucki I . The spectrum of behaviors influenced by serotonin. Biol Psychiatry 1998; 44: 151–162.

    Article  CAS  PubMed  Google Scholar 

  13. Owens MJ, Nemeroff CB . Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin Chem 1994; 40: 288–295.

    CAS  PubMed  Google Scholar 

  14. Vaughan J, Donaldson C, Bittencourt J, Perrin MH, Lewis K, Sutton S et al. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 1995; 378: 287–292.

    Article  CAS  PubMed  Google Scholar 

  15. Reyes TM, Lewis K, Perrin MH, Kunitake KS, Vaughan J, Arias CA et al. Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc Natl Acad Sci USA 2001; 98: 2843–2848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hsu SY, Hsueh AJ . Human stresscopin and stresscopin-related peptide are selective ligands for the type 2 corticotropin-releasing hormone receptor. Nat Med 2001; 7: 605–611.

    Article  CAS  PubMed  Google Scholar 

  17. Lewis K, Li C, Perrin MH, Blount A, Kunitake K, Donaldson C et al. Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc Natl Acad Sci USA 2001; 98: 7570–7575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chalmers DT, Lovenberg TW, De Souza EB . Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J Neurosci 1995; 15: 6340–6350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Van Pett K, Viau V, Bittencourt JC, Chan RK, Li HY, Arias C et al. Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J Comp Neurol 2000; 428: 191–212.

    Article  CAS  PubMed  Google Scholar 

  20. Hammack SE, Schmid MJ, LoPresti ML, Der-Avakian A, Pellymounter MA, Foster AC et al. Corticotropin releasing hormone type 2 receptors in the dorsal raphe nucleus mediate the behavioral consequences of uncontrollable stress. J Neurosci 2003; 23: 1019–1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pernar L, Curtis AL, Vale WW, Rivier JE, Valentino RJ . Selective activation of corticotrophin-releasing factor-2 receptors on neurochemically identified neurons in the rat dorsal raphe nucleus reveals dual actions. J Neurosci 2004; 24: 1305–1311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Staub DR, Evans AK, Lowry CA . Evidence supporting a role for corticotropin-releasing factor type 2 (CRF(2)) receptors in the regulation of subpopulations of serotonergic neurons. Brain Res 2006; 1070: 77–89.

    Article  CAS  PubMed  Google Scholar 

  23. Amat J, Tamblyn JP, Paul ED, Bland ST, Amat P, Foster AC et al. Microinjection of urocortin 2 into the dorsal raphe nucleus activates serotonergic neurons and increases extracellular serotonin in the basolateral amygdala. Neuroscience 2004; 129: 509–519.

    Article  CAS  PubMed  Google Scholar 

  24. Maier SF, Watkins LR . Stressor controllability and learned helplessness: the roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neurosci Biobehav Rev 2005; 29: 829–841.

    Article  CAS  PubMed  Google Scholar 

  25. Forster GL, Pringle RB, Mouw NJ, Vuong SM, Watt MJ, Burke AR et al. Corticotropin-releasing factor in the dorsal raphe nucleus increases medial prefrontal cortical serotonin via type 2 receptors and median raphe nucleus activity. Eur J Neurosci 2008; 28: 299–310.

    Article  PubMed  Google Scholar 

  26. Lukkes JL, Forster GL, Renner KJ, Summers CH . Corticotropin-releasing factor 1 and 2 receptors in the dorsal raphé differentially affect serotonin release in the nucleus accumbens. Eur J Pharmacol 2008; 578: 185–193.

    Article  CAS  PubMed  Google Scholar 

  27. Gysling K, Forray MI, Haeger P, Daza C, Rojas R . Corticotropin-releasing hormone and urocortin: redundant or distinctive functions? Brain Res Brain Res Rev 2004; 47: 116–125.

    Article  CAS  PubMed  Google Scholar 

  28. Kozicz T . On the role of urocortin 1 in the non-preganglionic Edinger–Westphal nucleus in stress adaptation. Gen Comp Endocrinol 2007; 153: 235–240.

    Article  CAS  PubMed  Google Scholar 

  29. Pan W, Kastin AJ . Urocortin and the brain. Prog Neurobiol 2008; 84: 148–156.

    Article  CAS  PubMed  Google Scholar 

  30. Bachtell RK, Weitemier AZ, Galvan-Rosas A, Tsivkovskaia NO, Risinger FO, Phillips TJ, Grahame NJ, Ryabinin AE . The Edinger–Westphal–lateral septum urocortin pathway and its relationship to alcohol consumption. J Neurosci 2003; 23: 2477–2487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Luiten PGM, Ter Horst GJ, Karst H, Steffens AB . The course of paraventricular hypothalamic efferents to autonomic structures in medulla and spinal cord. Brain Res 1985; 329: 374–378.

    Article  CAS  PubMed  Google Scholar 

  32. Sim LJ, Joseph SA . Arcuate nucleus projections to brainstem regions which modulate nociception. J Chem Neuroanat 1991; 4: 97–109.

    Article  CAS  PubMed  Google Scholar 

  33. Luppi PH, Aston-Jones G, Akaoka H, Chouvet G, Jouvet M . Afferent projections to the rat locus coeruleus demonstrated by retrograde and anterograde tracing with cholera-toxin B subunit and Phaseolus vulgaris-leucoagglutinin. Neuroscience 1995; 65: 119–160.

    Article  CAS  PubMed  Google Scholar 

  34. Peyron C, Petit JM, Rampon C, Jouvet M, Luppi PH . Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods. Neuroscience 1998; 82: 443–468.

    Article  CAS  PubMed  Google Scholar 

  35. Li C, Vaughan J, Sawchenko PE, Vale WW . Urocortin III-immunoreactive projections in rat brain: partial overlap with sites of type 2 corticotrophin-releasing factor receptor expression. J Neurosci 2002; 22: 991–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vetter DE, Li C, Zhao L, Contarino A, Liberman MC, Smith GW et al. Urocortin-deficient mice show hearing impairment and increased anxiety-like behavior. Nat Genet 2002; 31: 363–369.

    Article  CAS  PubMed  Google Scholar 

  37. Chen A, Zorrilla E, Smith S, Rousso D, Levy C, Vaughan J et al. Urocortin 2-deficient mice exhibit gender-specific alterations in circadian hypothalamus-pituitary-adrenal axis and depressive-like behavior. J Neurosci 2006; 26: 5500–5510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Korosi A, Veening JG, Kozicz T, Henckens M, Dederen J, Groenink L et al. Distribution and expression of CRF receptor 1 and 2 mRNAs in the CRF over-expressing mouse brain. Brain Res 2006; 9: 46–54.

    Article  CAS  Google Scholar 

  39. Al-Dujaili EA, Mullins LJ, Bailey MA, Andrew R, Kenyon CJ . Physiological and pathophysiological applications of sensitive ELISA methods for urinary deoxycorticosterone and corticosterone in rodents. Steroids 2009; 74: 938–944.

    Article  CAS  PubMed  Google Scholar 

  40. Contarino A, Dellu F, Koob GF, Smith GW, Lee KF, Vale W et al. Reduced anxiety-like and cognitive performance in mice lacking the corticotropin-releasing factor receptor 1. Brain Res 1999; 835: 1–9.

    Article  CAS  PubMed  Google Scholar 

  41. Pellow S, Chopin P, File SE, Briley M . Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 1985; 14: 149–167.

    Article  CAS  PubMed  Google Scholar 

  42. Lister RG . The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology 1987; 92: 180–185.

    CAS  PubMed  Google Scholar 

  43. Bourin M, Hascoët M . The mouse light/dark box test. Eur J Pharmacol 2003; 463: 55–65.

    Article  CAS  PubMed  Google Scholar 

  44. Evans AK, Reinders N, Ashford KA, Christie IN, Wakerley JB, Lowry CA . Evidence for serotonin synthesis-dependent regulation of in vitro neuronal firing rates in the midbrain raphe complex. Eur J Pharmacol 2008; 590: 136–149.

    Article  CAS  PubMed  Google Scholar 

  45. Paxinos G, Franklin KBJ . The Mouse Brain in Stereotaxic Coordinates, 2nd edn Academic Press: San Diego, 2001.

    Google Scholar 

  46. Kageyama K, Bradbury MJ, Zhao L, Blount AL, Vale WW . Urocortin messenger ribonucleic acid: tissue distribution in the rat and regulation in thymus by lipopolysaccharide and glucocorticoids. Endocrinology 1999; 140: 5651–5658.

    Article  CAS  PubMed  Google Scholar 

  47. Chen A, Blount A, Vaughan J, Brar B, Vale W . Urocortin II gene is highly expressed in mouse skin and skeletal muscle tissues: localization, basal expression in corticotropin-releasing factor receptor (CRFR) 1- and CRFR2-null mice, and regulation by glucocorticoids. Endocrinology 2004; 145: 2445–2457.

    Article  CAS  PubMed  Google Scholar 

  48. Staub DR, Spiga F, Lowry CA . Urocortin 2 increases c-Fos expression in topographically organized subpopulations of serotonergic neurons in the rat dorsal raphe nucleus. Brain Res 2005; 1044: 176–189.

    Article  CAS  PubMed  Google Scholar 

  49. Hale MW, Hay-Schmidt A, Mikkelsen JD, Poulsen B, Shekhar A, Lowry CA . Exposure to an open-field arena increases c-Fos expression in a distributed anxiety-related system projecting to the basolateral amygdaloid complex. Neuroscience 2008; 155: 659–672.

    Article  CAS  PubMed  Google Scholar 

  50. Coste SC, Kesterson RA, Heldwein KA, Stevens SL, Heard AD, Hollis JH et al. Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2. Nat Genet 2000; 24: 403–409.

    Article  CAS  PubMed  Google Scholar 

  51. Bale TL, Contarino A, Smith GW, Chan R, Gold LH, Sawchenko PE et al. Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat Genet 2000; 24: 410–441.

    Article  CAS  PubMed  Google Scholar 

  52. Wang X, Su H, Copenhagen LD, Vaishnav S, Pieri F, Shope CD et al. Urocortin-deficient mice display normal stress-induced anxiety behavior and autonomic control but an impaired acoustic startle response. Mol Cell Biol 2002; 22: 6605–6610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sawchenko PE, Imaki T, Potter E, Kovács K, Imaki J, Vale W . The functional neuroanatomy of corticotropin-releasing factor. Ciba Found Symp 1993; 172: 5–21.

    CAS  PubMed  Google Scholar 

  54. Swanson LW, Sawchenko PE, Rivier J, Vale WW . Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology 1983; 36: 165–186.

    Article  CAS  PubMed  Google Scholar 

  55. Rosen JB . The neurobiology of conditioned and unconditioned fear: a neurobehavioral system analysis of the amygdala. Behav Cogn Neurosci Rev 2004; 3: 23–41.

    Article  PubMed  Google Scholar 

  56. Rhodes ME, Rubin RT . Functional sex differences (‘sexual diergism’) of central nervous system cholinergic systems, vasopressin, and hypothalamic-pituitary-adrenal axis activity in mammals: a selective review. Brain Res Rev 1999; 30: 135–152.

    Article  CAS  PubMed  Google Scholar 

  57. Piccinelli M, Wilkinson G . Gender differences in depression. Critical Review. Br J Psychiatry 2000; 177: 486–492.

    Article  CAS  PubMed  Google Scholar 

  58. Timpl P, Spanagel R, Sillaber I, Kresse A, Reul JM, Stalla GK et al. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat Genet 1998; 19: 162–166.

    Article  CAS  PubMed  Google Scholar 

  59. Smith GW, Aubry JM, Dellu F, Contarino A, Bilezikjian LM, Gold LH et al. Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 1998; 20: 1093–1102.

    Article  CAS  PubMed  Google Scholar 

  60. Bittencourt JC, Vaughan J, Arias C, Rissman RA, Vale WW, Sawchenko PE . Urocortin expression in rat brain: evidence against a pervasive relationship of urocortin-containing projections with targets bearing type 2 CRF receptors. J Comp Neurol 1999; 415: 285–312.

    Article  CAS  PubMed  Google Scholar 

  61. Henry B, Vale W, Markou A . The effect of lateral septum corticotropin-releasing factor receptor 2 activation on anxiety is modulated by stress. J Neurosci 2006; 26: 9142–9152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Venihaki M, Sakihara S, Subramanian S, Dikkes P, Weninger SC, Liapakis G et al. Urocortin III, a brain neuropeptide of the corticotropin-releasing hormone family: modulation by stress and attenuation of some anxiety-like behaviours. J Neuroendocrinol 2004; 16: 411–422.

    Article  CAS  PubMed  Google Scholar 

  63. Valdez GR, Zorilla EP, Rivier J, Vale WW, Koob GF . Locomotor suppressive and anxiolytic-like effects of urocortin-3, a highly selective type 2 corticotropin-releasing factor agonist. Brain Res 2003; 980: 206–212.

    Article  CAS  PubMed  Google Scholar 

  64. Day HE, Greenwood BN, Hammack SE, Watkins LR, Fleshner M, Maier SF et al. Differential expression of 5HT-1A, alpha 1b adrenergic, CRF-R1, and CRF-R2 receptor mRNA in serotonergic, gamma-aminobutyric acidergic, and catecholaminergic cells of the rat dorsal raphe nucleus. J Comp Neurol 2004; 474: 364–378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Silveria MC, Sandner G, Graeff FG . Induction of Fos immunoreactivity in the brain by exposure to elevated plus-maze. Behav Brain Res 1993; 56: 115–118.

    Article  Google Scholar 

  66. Matsuda S, Peng H, Yoshimura H, Wen TC, Fukuda T, Sakanaka M . Persistent c-fos expression in the brains of mice with chronic social stress. Neurosci Res 1996; 26: 157–170.

    Article  CAS  PubMed  Google Scholar 

  67. Grahn RE, Will MJ, Hammack SE, Maswood S, McQueen MB, Watkins LR et al. Activation of serotonin-immunoreactive cells in the dorsal raphe nucleus in rats exposed to an uncontrollable stressor. Brain Res 1999; 826: 35–43.

    Article  CAS  PubMed  Google Scholar 

  68. Chung KK, Martinez M, Herbert J . c-fos expression, behavioural, endocrine and autonomic responses to acute social stress in male rats after chronic restraint: modulation by serotonin. Neuroscience 2000; 95: 453–463.

    Article  CAS  PubMed  Google Scholar 

  69. Bittencourt JC, Sawchenko PE . Do centrally administered neuropeptides access cognate receptors?: an analysis in the central corticotropin-releasing factor system. J Neurosci 2000; 20: 1142–1156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kirby LG, Allen AR, Lucki I . Regional differences in the effects of forced swimming on extracellular levels of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid. Brain Res 1995; 682: 189–196.

    Article  CAS  PubMed  Google Scholar 

  71. Adell A, Casanovas JM, Artigas F . Comparative study in the rat of the actions of different types of stress on the release of 5-HT in raphe nuclei and forebrain areas. Neuropharmacology 1997; 36: 735–741.

    Article  CAS  PubMed  Google Scholar 

  72. Maswood S, Barter JE, Watkins LR, Maier SF . Exposure to inescapable but not escapable shock increases extracellular levels of 5-HT in the dorsal raphe nucleus of the rat. Brain Res 1998; 783: 115–120.

    Article  CAS  PubMed  Google Scholar 

  73. Isogawa K, Akiyoshi J, Hikichi T, Yamamoto Y, Tsutsumi T, Nagayama H . Effect of corticotropin releasing factor receptor 1 antagonist on extracellular norepinephrine, dopamine and serotonin in hippocampus and prefrontal cortex of rats in vivo. Neuropeptides 2000; 34: 234–239.

    Article  CAS  PubMed  Google Scholar 

  74. Linthorst AC, Peñalva RG, Flachskamm C, Holsboer F, Reul JM . Forced swim stress activates rat hippocampal serotonergic neurotransmission involving a corticotropin-releasing hormone receptor-dependent mechanism. Eur J Neurosci 2002; 16: 2441–2452.

    Article  PubMed  Google Scholar 

  75. Peñalva RG, Flachskamm C, Zimmermann S, Wurst W, Holsboer F, Reul JM et al. Corticotropin-releasing hormone receptor type 1-deficiency enhances hippocampal serotonergic neurotransmission: an in vivo microdialysis study in mutant mice. Neuroscience 2002; 109: 253–266.

    Article  PubMed  Google Scholar 

  76. Oshima A, Flachskamm C, Reul JM, Holsboer F, Linthorst AC . Altered serotonergic neurotransmission but normal hypothalamic-pituitary-adrenocortical axis activity in mice chronically treated with the corticotropin-releasing hormone receptor type 1 antagonist NBI 30775. Neuropsychopharmacology 2003; 28: 2148–2159.

    Article  CAS  PubMed  Google Scholar 

  77. Gray JA . A theory of anxiety: the role of the limbic system. Encephale 1983; 9: 161B–166B.

    CAS  PubMed  Google Scholar 

  78. Duncan GE, Knapp DJ, Breese GR . Neuroanatomical characterization of Fos induction in rat behavioral models of anxiety. Brain Res 1996; 713: 79–91.

    Article  CAS  PubMed  Google Scholar 

  79. Campbell BM, Merchant KM . Serotonin 2C receptors within the basolateral amygdala induce acute fear-like responses in an open-field environment. Brain Res 2003; 993: 1–9.

    Article  CAS  PubMed  Google Scholar 

  80. Spiga F, Lightman SL, Shekhar A, Lowry CA . Injections of urocortin 1 into the basolateral amygdala induce anxiety-like behavior and c-Fos expression in brainstem serotonergic neurons. Neuroscience 2006; 138: 1265–1276.

    Article  CAS  PubMed  Google Scholar 

  81. Singewald N, Sharp T . Neuroanatomical targets of anxiogenic drugs in the hindbrain as revealed by Fos immunocytochemistry. Neuroscience 2000; 98: 759–770.

    Article  CAS  PubMed  Google Scholar 

  82. Singewald N, Salchner P, Sharp T . Induction of c-Fos expression in specific areas of the fear circuitry in rat forebrain by anxiogenic drugs. Biol Psychiatry 2003; 53: 275–283.

    Article  CAS  PubMed  Google Scholar 

  83. Abrams JK, Johnson PL, Hay-Schmidt A, Mikkelsen JD, Shekhar A, Lowry CA . Serotonergic systems associated with arousal and vigilance behaviors following administration of anxiogenic drugs. Neuroscience 2005; 133: 983–997.

    Article  CAS  PubMed  Google Scholar 

  84. Herman JP, Dolgas CM, Carlson SL . Ventral subiculum regulates hypothalamo-pituitary-adrenocortical and behavioural responses to cognitive stressors. Neuroscience 1998; 86: 449–459.

    Article  CAS  PubMed  Google Scholar 

  85. O’Mara S . The subiculum: what it does, what it might do, and what neuroanatomy has yet to tell us. J Anat 2005; 207: 271–282.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Bannerman DM, Rawlins JN, McHugh SB, Deacon RM, Yee BK, Bast T et al. Regional dissociations within the hippocampus-memory and anxiety. Neurosci Biobehav Rev 2004; 28: 273–283.

    Article  CAS  PubMed  Google Scholar 

  87. Engin E, Treit D . The role of hippocampus in anxiety: intracerebral infusion studies. Behav Pharmacol 2007; 18: 365–374.

    Article  CAS  PubMed  Google Scholar 

  88. Kjelstrup KG, Tuvnes FA, Steffenach HA, Murison R, Moser EI, Moser MB . Reduced fear expression after lesions of the ventral hippocampus. Proc Natl Acad Sci USA 2002; 99: 10825–10830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. McHugh SB, Deacon RM, Rawlins JN, Bannerman DM . Amygdala and ventral hippocampus contribute differentially to mechanisms of fear and anxiety. Behav Neurosci 2004; 118: 63–78.

    Article  CAS  PubMed  Google Scholar 

  90. Lowry CA, Johnson PL, Hay-Schmidt A, Mikkelsen J, Shekhar A . Modulation of anxiety circuits by serotonergic systems. Stress 2005; 8: 233–246.

    Article  CAS  PubMed  Google Scholar 

  91. Kohler C, Steinbusch H . Identification of serotonin and non-serotonin-containing neurons of the mid-brain raphe projecting to the entorhinal area and the hippocampal formation. A combined immunohistochemical and fluorescent retrograde tracing study in the rat brain. Neuroscience 1982; 7: 951–975.

    Article  CAS  PubMed  Google Scholar 

  92. McKenna JT, Vertes RP . Collateral projections from the median raphe nucleus to the medial septum and hippocampus. Brain Res Bull 2001; 54: 619–630.

    Article  CAS  PubMed  Google Scholar 

  93. Takahashi LK, Ho SP, Livanov V, Graciani N, Arneric SP . Antagonism of CRF2 receptors produces anxiolytic behavior in animal models of anxiety. Brain Res 2001; 902: 135–142.

    Article  CAS  PubMed  Google Scholar 

  94. Pelleymounter MA, Joppa M, Ling N, Foster AC . Pharmacological evidence supporting a role for central corticotropin-releasing factor(2) receptors in behavioral, but not endocrine, response to environmental stress. J Pharmacol Exp Ther 2002; 302: 145–152.

    Article  CAS  PubMed  Google Scholar 

  95. Hammack SE, Richey KJ, Schmid MJ, LoPresti ML, Watkins LR, Maier SF . The role of corticotropin-releasing hormone in the dorsal raphe nucleus in mediating the behavioral consequences of uncontrollable stress. J Neurosci 2002; 22: 1020–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gardner KL, Thrivikraman KV, Lightman SL, Plotsky PM, Lowry CA . Early life experience alters behavior during social defeat: focus on serotonergic systems. Neuroscience 2005; 136: 181–191.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr C Kenyon and Dr E Aldujaili (Endocrinology Unit, Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh), for providing specific corticosterone antibody and guiding us through the enzyme-linked immunosorbent assay protocol they developed. AC is incumbent of the Philip Harris and Gerald Ronson Career Development Chair. WV is a Clayton Medical Research Foundation Senior Investigator and is the Helen McLoraine Professor of Molecular Neurobiology. This work is supported by a research grant from The German Israeli Foundation for Scientific Research and Development; a research grant from the Israel Science Foundation; a research grant from the Institute for the Study of Affective Neuroscience; a research grant from the Israel Ministry of Health; a research grant from Roberto and Renata Ruhman; a grant from Mr and Mrs Mike Kahn; a research grant from Mr Jorge David Ashkenazi, a research grant from Mr and Mrs Barry Wolfe; a research grant from The Irving B Harris Foundation; a research grant from Green Irwin Alzheimer's Research; a research grant from The Joseph D Shane Fund for Neuroscience; a grant from the Estate of Ernst and Anni Deutsch (RPH Promotor Stiftung); a grant from the Hana and Julius Rosen Fund; a grant from the Mel and Joyce Eisenberg Keefer Professional Chair for New Scientists; a research grant from Mr and Mrs Gerhard and Hannah Bacharach; a research grant from Nella and Leon Benoziyo Center for Neurosciences; a grant from Fondation Fernande et Jean Gaj; a research grant from the Woman's Health Research Center; a research grant from Abisch–Frenkel Foundation for the Promotion of Life Sciences; and a research Grant from the Carl and Micaela Einhorn–Dominic Institute for Brain Research. CAL is supported by a NARSAD 2007 Young Investigator Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Chen.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neufeld-Cohen, A., Evans, A., Getselter, D. et al. Urocortin-1 and -2 double-deficient mice show robust anxiolytic phenotype and modified serotonergic activity in anxiety circuits. Mol Psychiatry 15, 426–441 (2010). https://doi.org/10.1038/mp.2009.115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2009.115

Keywords

This article is cited by

Search

Quick links