Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Correlation analysis between genome-wide expression profiles and cytoarchitectural abnormalities in the prefrontal cortex of psychiatric disorders

Abstract

Cytoarchitectural abnormalities have been described in the prefrontal cortex of subjects with schizophrenia, bipolar disorder and depression. However, little is known about the gene expression profiles associated with these abnormalities. Genome-wide expression profiling technology provides an unbiased approach to identifying candidate genes and biological processes that may be associated with complex biological traits such as cytoarchitecture. In this study, we explored expression profiles associated with the abnormalities by using publicly available microarray metadata and cytoarchitectural data from post-mortem samples of the frontal cortex from 54 subjects (schizophrenia, n=14; bipolar disorder, n=13; depression, n=12 and controls n=15). Correlation analysis between genome-wide expression levels and cytoarchitectural traits revealed that 818 genes were significantly correlated with a decrease in the number of perineuronal oligodendrocytes across all subjects. A total of 600 genes were significantly correlated with a decrease in density of calbindin-positive interneurons across all subjects. Multiple biological processes including cellular metabolism, central nervous system development, cell motility and programmed cell death were significantly overrepresented in both correlated gene lists. These findings may provide novel insights into the molecular mechanisms that underlie the cytoarchitectural abnormalities of perineuronal oligodendrocytes and calbindin-containing GABAergic interneurons in the prefrontal cortex of the major psychiatric disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Harrison PJ . The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 1999; 122 (Part 4): 593–624.

    Article  Google Scholar 

  2. Rajkowska G . Cell pathology in bipolar disorder. Bipolar Disord 2002; 4: 105–116.

    Article  Google Scholar 

  3. Rajkowska G . Depression: what we can learn from postmortem studies. Neuroscientist 2003; 9: 273–284.

    Article  Google Scholar 

  4. Uranova NA, Vostrikov VM, Orlovskaya DD, Rachmanova VI . Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley neuropathology consortium. Schizophr Res 2004; 67: 269–275.

    Article  Google Scholar 

  5. Vostrikov VM, Uranova NA, Orlovskaya DD . Deficit of perineuronal oligodendrocytes in the prefrontal cortex in schizophrenia and mood disorders. Schizophr Res 2007; 94: 273–280.

    Article  Google Scholar 

  6. Reynolds GP, Zhang ZJ, Beasley CL . Neurochemical correlates of cortical GABAergic deficits in schizophrenia: selective losses of calcium binding protein immunoreactivity. Brain Res Bull 2001; 55: 579–584.

    Article  CAS  Google Scholar 

  7. Katsel P, Davis KL, Haroutunian V . Variations in myelin and oligodendrocyte-related gene expression across multiple brain regions in schizophrenia: a gene ontology study. Schizophr Res 2005; 79: 157–173.

    Article  Google Scholar 

  8. Letwin NE, Kafkafi N, Benjamini Y, Mayo C, Frank BC, Luu T et al. Combined application of behavior genetics and microarray analysis to identify regional expression themes and gene-behavior associations. J Neurosci 2006; 26: 5277–5287.

    Article  CAS  Google Scholar 

  9. Blalock EM, Chen KC, Sharrow K, Herman JP, Porter NM, Foster TC et al. Gene microarrays in hippocampal aging: statistical profiling identifies novel processes correlated with cognitive impairment. J Neurosci 2003; 23: 3807–3819.

    Article  CAS  Google Scholar 

  10. Wang J, Williams RW, Manly KF . WebQTL: web-based complex trait analysis. Neuroinformatics 2003; 1: 299–308.

    Article  Google Scholar 

  11. Kim S, Choi KH, Baykiz AF, Gershenfeld HK . Suicide candidate genes associated with bipolar disorder and schizophrenia: an exploratory gene expression profiling analysis of post-mortem prefrontal cortex. BMC Genomics 2007; 8: 413.

    Article  Google Scholar 

  12. Higgs BW, Elashoff M, Richman S, Barci B . An online database for brain disease research. BMC Genomics 2006; 7: 70.

    Article  Google Scholar 

  13. Knable MB, Torrey EF, Webster MJ, Bartko JJ . Multivariate analysis of prefrontal cortical data from the stanley foundation neuropathology consortium. Brain Res Bull 2001; 55: 651–659.

    Article  CAS  Google Scholar 

  14. Knable MB, Barci BM, Bartko JJ, Webster MJ, Torrey EF . Molecular abnormalities in the major psychiatric illnesses: classification and regression tree (CRT) analysis of post-mortem prefrontal markers. Mol Psychiatry 2002; 7: 392–404.

    Article  CAS  Google Scholar 

  15. Knable MB, Barci BM, Webster MJ, Meador-Woodruff J, Torrey EF . Molecular abnormalities of the hippocampus in severe psychiatric illness: postmortem findings from the Stanley neuropathology consortium. Mol Psychiatry 2004; 9: 609–620, 544.

    Article  CAS  Google Scholar 

  16. Torrey EF, Barci BM, Webster MJ, Bartko JJ, Meador-Woodruff JH, Knable MB . Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol Psychiatry 2005; 57: 252–260.

    Article  CAS  Google Scholar 

  17. Torrey EF, Webster M, Knable M, Johnston N, Yolken RH . The stanley foundation brain collection and neuropathology consortium. Schizophr Res 2000; 44: 151–155.

    Article  CAS  Google Scholar 

  18. Bianchi F, Nuciforo P, Vecchi M, Bernard L, Tizzoni L, Marchetti A et al. Survival prediction of stage I lung adenocarcinomas by expression of 10 genes. J Clin Invest 2007; 117: 3436–3444.

    Article  CAS  Google Scholar 

  19. Qiao X, Lu JY, Hofmann SL . Gene expression profiling in a mouse model of infantile neuronal ceroid lipofuscinosis reveals upregulation of immediate early genes and mediators of the inflammatory response. BMC Neurosci 2007; 8: 95.

    Article  Google Scholar 

  20. Benjamini Y, Hochberg Y . controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 1995; 57: 289–300.

    Google Scholar 

  21. Weidenhofer J, Bowden NA, Scott RJ, Tooney PA . Altered gene expression in the amygdala in schizophrenia: upregulation of genes located in the cytomatrix active zone. Mol Cell Neurosci 2006; 31: 243–250.

    Article  CAS  Google Scholar 

  22. Perera RJ, Marcusson EG, Koo S, Kang X, Kim Y, White N et al. Identification of novel PPARγ target genes in primary human adipocytes. Gene 2006; 369: 90–99.

    Article  CAS  Google Scholar 

  23. Blalock EM, Geddes JW, Chen KC, Porter NM, Markesbery WR, Landfield PW . Incipient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc Natl Acad Sci USA 2004; 101: 2173–2178.

    Article  CAS  Google Scholar 

  24. Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P . Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 2000; 28: 53–67.

    Article  CAS  Google Scholar 

  25. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25: 25–29.

    Article  CAS  Google Scholar 

  26. Hocking RR . The analysis and selection of variables in linear regression. Biometrics 1976; 32: 1–49.

    Article  Google Scholar 

  27. Mitkus SN, Hyde TM, Vakkalanka R, Kolachana B, Weinberger DR, Kleinman JE et al. Expression of oligodendrocyte-associated genes in dorsolateral prefrontal cortex of patients with schizophrenia. Schizophr Res 2008; 98: 129–138.

    Article  Google Scholar 

  28. Dennis Jr G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 2003; 4: P3.

    Article  Google Scholar 

  29. Chesler EJ, Wang J, Lu L, Qu Y, Manly KF, Williams RW . Genetic correlates of gene expression in recombinant inbred strains: a relational model system to explore neurobehavioral phenotypes. Neuroinformatics 2003; 1: 343–357.

    Article  Google Scholar 

  30. Ferrara CT, Wang P, Neto EC, Stevens RD, Bain JR, Wenner BR et al. Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling. PLoS Genet 2008; 4: e1000034.

    Article  Google Scholar 

  31. Konopaske GT, Dorph-Petersen KA, Sweet RA, Pierri JN, Zhang W, Sampson AR et al. Effect of chronic antipsychotic exposure on astrocyte and oligodendrocyte numbers in macaque monkeys. Biol Psychiatry 2008; 63: 759--765.

    Article  CAS  Google Scholar 

  32. Hashimoto T, Volk DW, Eggan SM, Mirnics K, Pierri JN, Sun Z et al. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J Neurosci 2003; 23: 6315–6326.

    Article  CAS  Google Scholar 

  33. Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S . Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 2004; 61: 300–308.

    Article  CAS  Google Scholar 

  34. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL et al. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry 2004; 9: 684–697, 643.

    Article  CAS  Google Scholar 

  35. Jarskog LF . Apoptosis in schizophrenia: pathophysiologic and therapeutic considerations. Curr Opin Psychiatry 2006; 19: 307–312.

    Article  Google Scholar 

  36. Uranova N, Orlovskaya D, Vikhreva O, Zimina I, Kolomeets N, Vostrikov V et al. Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 2001; 55: 597–610.

    Article  CAS  Google Scholar 

  37. Manji HK, Moore GJ, Rajkowska G, Chen G . Neuroplasticity and cellular resilience in mood disorders. Mol Psychiatry 2000; 5: 578–593.

    Article  CAS  Google Scholar 

  38. Pawitan Y, Michiels S, Koscielny S, Gusnanto A, Ploner A . False discovery rate, sensitivity and sample size for microarray studies. Bioinformatics 2005; 21: 3017–3024.

    Article  CAS  Google Scholar 

  39. Rossner MJ, Hirrlinger J, Wichert SP, Boehm C, Newrzella D, Hiemisch H et al. Global transcriptome analysis of genetically identified neurons in the adult cortex. J Neurosci 2006; 26: 9956–9966.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the investigators generating original data in the SMRIDB, in particular Drs S Hossein Fatemi, Natalya Uranova, Gavin Reynolds, Erminio Costa, David Cotter, Husseini K Manji, Paul Harrison, M Kerry O'Banion, C Anthony Altar and Pamela Sklar, along with their many collaborators, who made this study possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M J Webster.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Webster, M. Correlation analysis between genome-wide expression profiles and cytoarchitectural abnormalities in the prefrontal cortex of psychiatric disorders. Mol Psychiatry 15, 326–336 (2010). https://doi.org/10.1038/mp.2008.99

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2008.99

Keywords

This article is cited by

Search

Quick links