Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute myeloid leukemia

Inhibition of serotonin receptor type 1 in acute myeloid leukemia impairs leukemia stem cell functionality: a promising novel therapeutic target

Abstract

Acute myeloid leukemia (AML) is a clinically and molecularly heterogeneous neoplasia with poor outcome, organized as a hierarchy initiated and maintained by a sub-population with differentiation and self-renewal capacities called leukemia stem cells (LSCs). Although currently used chemotherapy is capable of initially reducing the tumor burden producing a complete remission, most patients will ultimately relapse and will succumb to their disease. As such, new therapeutic strategies are needed. AML cells differentially expressed serotonin receptor type 1 (HTR1) compared with healthy blood cells and the most primitive hematopoietic fraction; in fact, HTR1B expression on AML patient samples correlated with clinical outcome. Inhibition of HTR1s activated the apoptosis program, induced differentiation and reduced the clonogenic capacity, while minimal effect was observed on healthy blood cells. In vivo regeneration capacity of primary AML samples was disrupted upon inhibition of HTR1. The self-renewal capacity remaining in AML cells upon in vivo treatment was severely reduced as demonstrated by serial transplantation. Thus, treatment with HTR1 antagonists showed antileukemia effect, especially anti-LSC activity while sparing healthy blood cells. Our results highlight the importance of HTR1 in leukemogenesis and LSC survival and identify this receptor family as a new target for therapy in AML with prognostic value.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010; 115: 453–474.

    Article  PubMed  Google Scholar 

  2. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    Article  CAS  PubMed  Google Scholar 

  3. Gentles AJ, Plevritis SK, Majeti R, Alizadeh AA . Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia. JAMA 2010; 304: 2706–2715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 2011; 17: 1086–1093.

    Article  CAS  PubMed  Google Scholar 

  5. Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol 2007; 25: 1315–1321.

    Article  CAS  PubMed  Google Scholar 

  6. Estey EH . Acute myeloid leukemia: 2013 update on risk-stratification and management. Am J Hematol 2013; 88: 318–327.

    Article  CAS  PubMed  Google Scholar 

  7. Peters MA, Walenkamp AM, Kema IP, Meijer C, de Vries EG, Oosting SF . Dopamine and serotonin regulate tumor behavior by affecting angiogenesis. Drug Resist Updat 2014; 17: 96–104.

    Article  PubMed  Google Scholar 

  8. Sachlos E, Risueno RM, Laronde S, Shapovalova Z, Lee JH, Russell J et al. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell 2012; 149: 1284–1297.

    Article  CAS  PubMed  Google Scholar 

  9. Hannon J, Hoyer D . Molecular biology of 5-HT receptors. Behav Brain Res 2008; 195: 198–213.

    Article  CAS  PubMed  Google Scholar 

  10. Vicentini LM, Cattaneo MG, Fesce R . Evidence for receptor subtype cross-talk in the mitogenic action of serotonin on human small-cell lung carcinoma cells. Eur J Pharmacol 1996; 318: 497–504.

    Article  CAS  PubMed  Google Scholar 

  11. Siddiqui EJ, Shabbir M, Mikhailidis DP, Thompson CS, Mumtaz FH . The role of serotonin (5-hydroxytryptamine1A and 1B) receptors in prostate cancer cell proliferation. J Urol 2006; 176 (Part 1): 1648–1653.

    Article  CAS  PubMed  Google Scholar 

  12. Siddiqui EJ, Shabbir MA, Mikhailidis DP, Mumtaz FH, Thompson CS . The effect of serotonin and serotonin antagonists on bladder cancer cell proliferation. BJU Int 2006; 97: 634–639.

    Article  CAS  PubMed  Google Scholar 

  13. Alpini G, Invernizzi P, Gaudio E, Venter J, Kopriva S, Bernuzzi F et al. Serotonin metabolism is dysregulated in cholangiocarcinoma, which has implications for tumor growth. Cancer Res 2008; 68: 9184–9193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huhnt W, Lubbe AS . Venules and arterioles in xenotransplanted human colon adenocarcinoma critically constrict with hyperthermia and serotonin. J Cancer Res Clin Oncol 1995; 121: 267–274.

    Article  CAS  PubMed  Google Scholar 

  15. Huhnt W, Lubbe AS . Growth, microvessel density and tumor cell invasion of human colon adenocarcinoma under repeated treatment with hyperthermia and serotonin. J Cancer Res Clin Oncol 1995; 121: 423–428.

    Article  CAS  PubMed  Google Scholar 

  16. Stucker O, Vicaut E, Teisseire B . Specific response to 5-HT2 agonists by arterioles linked to Meth A tumors in mice. Am J Physiol 1992; 262 (Part 2): H704–H709.

    CAS  PubMed  Google Scholar 

  17. Moreno-Martinez D, Nomdedeu M, Lara-Castillo MC, Etxabe A, Pratcorona M, Tesi N et al. XIAP inhibitors induce differentiation and impair clonogenic capacity of acute myeloid leukemia stem cells. Oncotarget 2014; 5: 4337–4346.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Feniuk W, Humphrey PP, Perren MJ, Watts AD . A comparison of 5-hydroxytryptamine receptors mediating contraction in rabbit aorta and dog saphenous vein: evidence for different receptor types obtained by use of selective agonists and antagonists. Br J Pharmacol 1985; 86: 697–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ireland SJ, Tyers MB . Pharmacological characterization of 5-hydroxytryptamine-induced depolarization of the rat isolated vagus nerve. Br J Pharmacol 1987; 90: 229–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schuurkes JA, Van Nueten JM, Van Daele PG, Reyntjens AJ, Janssen PA . Motor-stimulating properties of cisapride on isolated gastrointestinal preparations of the guinea pig. J Pharmacol Exp Ther 1985; 234: 775–783.

    CAS  PubMed  Google Scholar 

  21. Millan MJ, Maiofiss L, Cussac D, Audinot V, Boutin JA, Newman-Tancredi A . Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. I. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes. J Pharmacol Exp Ther 2002; 303: 791–804.

    Article  CAS  PubMed  Google Scholar 

  22. Monachon MA, Burkard WP, Jalfre M, Haefely W . Blockade of central 5-hydroxytryptamine receptors by methiothepin. Naunyn Schmiedebergs Arch Pharmacol 1972; 274: 192–197.

    Article  CAS  PubMed  Google Scholar 

  23. Turvill JL, Connor P, Farthing MJ . The inhibition of cholera toxin-induced 5-HT release by the 5-HT(3) receptor antagonist, granisetron, in the rat. Br J Pharmacol 2000; 130: 1031–1036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gale JD, Grossman CJ, Whitehead JW, Oxford AW, Bunce KT, Humphrey PP . GR113808: a novel, selective antagonist with high affinity at the 5-HT4 receptor. Br J Pharmacol 1994; 111: 332–338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Glennon RA, Naiman NA, Pierson ME, Titeler M, Lyon RA, Weisberg E . NAN-190: an arylpiperazine analog that antagonizes the stimulus effects of the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Eur J Pharmacol 1988; 154: 339–341.

    Article  CAS  PubMed  Google Scholar 

  26. Selkirk JV, Scott C, Ho M, Burton MJ, Watson J, Gaster LM et al. SB-224289—a novel selective (human) 5-HT1B receptor antagonist with negative intrinsic activity. Br J Pharmacol 1998; 125: 202–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Price GW, Burton MJ, Collin LJ, Duckworth M, Gaster L, Gothert M et al. SB-216641 and BRL-15572—compounds to pharmacologically discriminate h5-HT1B and h5-HT1D receptors. Naunyn Schmiedebergs Arch Pharmacol 1997; 356: 312–320.

    Article  CAS  PubMed  Google Scholar 

  28. Arvidsson LE, Hacksell U, Glennon RA . Recent advances in central 5-hydroxytryptamine receptor agonists and antagonists. Prog Drug Res 1986; 30: 365–471.

    CAS  PubMed  Google Scholar 

  29. Connor HE, Feniuk W, Humphrey PP, Perren MJ . 5-Carboxamidotryptamine is a selective agonist at 5-hydroxytryptamine receptors mediating vasodilatation and tachycardia in anaesthetized cats. Br J Pharmacol 1986; 87: 417–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Linder S, Shoshan MC . Is translational research compatible with preclinical publication strategies? Radiat Oncol 2006; 1: 4.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang DE, Hetherington CJ, Gonzalez DA, Chen HM, Tenen DG . Regulation of CD14 expression during monocytic differentiation induced with 1 alpha,25-dihydroxyvitamin D3. J Immunol 1994; 153: 3276–3284.

    CAS  PubMed  Google Scholar 

  32. Prudovsky I, Popov K, Akimov S, Serov S, Zelenin A, Meinhardt G et al. Antisense CD11b integrin inhibits the development of a differentiated monocyte/macrophage phenotype in human leukemia cells. Eur J Cell Biol 2002; 81: 36–42.

    Article  CAS  PubMed  Google Scholar 

  33. Hoyer D, Hannon JP, Martin GR . Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 2002; 71: 533–554.

    Article  CAS  PubMed  Google Scholar 

  34. Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M . Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 2003; 102: 972–980.

    Article  CAS  PubMed  Google Scholar 

  35. Grandage VL, Gale RE, Linch DC, Khwaja A . PI3-kinase/Akt is constitutively active in primary acute myeloid leukaemia cells and regulates survival and chemoresistance via NF-kappaB, Mapkinase and p53 pathways. Leukemia 2005; 19: 586–594.

    Article  CAS  PubMed  Google Scholar 

  36. Stauffer F, Holzer P, Garcia-Echeverria C . Blocking the PI3K/PKB pathway in tumor cells. Curr Med Chem Anticancer Agents 2005; 5: 449–462.

    Article  CAS  PubMed  Google Scholar 

  37. Min YH, Eom JI, Cheong JW, Maeng HO, Kim JY, Jeung HK et al. Constitutive phosphorylation of Akt/PKB protein in acute myeloid leukemia: its significance as a prognostic variable. Leukemia 2003; 17: 995–997.

    Article  CAS  PubMed  Google Scholar 

  38. Schmidt MJ, Sawyer BD, Perry KW, Fuller RW, Foreman MM, Ghetti B . Dopamine deficiency in the weaver mutant mouse. J Neurosci 1982; 2: 376–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ginawi OT, Al-Majed AA, Al-Suwailem AK, El-Hadiyah TM . Involvement of some 5-HT receptors in methamphetamine-induced locomotor activity in mice. J Physiol Pharmacol 2004; 55: 357–369.

    CAS  PubMed  Google Scholar 

  40. Walpole SC, Prieto-Merino D, Edwards P, Cleland J, Stevens G, Roberts I . The weight of nations: an estimation of adult human biomass. BMC Public Health 2012; 12: 439.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Carter BZ, Qiu Y, Huang X, Diao L, Zhang N, Coombes KR et al. Survivin is highly expressed in CD34(+)38(−) leukemic stem/progenitor cells and predicts poor clinical outcomes in AML. Blood 2012; 120: 173–180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fukuda S, Abe M, Onishi C, Taketani T, Purevsuren J, Yamaguchi S et al. Survivin selectively modulates genes deregulated in human leukemia stem cells. J Oncol 2011; 2011: 946936.

    Article  PubMed  Google Scholar 

  43. Wagner M, Schmelz K, Wuchter C, Ludwig WD, Dorken B, Tamm I . In vivo expression of survivin and its splice variant survivin-2B: impact on clinical outcome in acute myeloid leukemia. Int J Cancer 2006; 119: 1291–1297.

    Article  CAS  PubMed  Google Scholar 

  44. Pauwels PJ, Gouble A, Wurch T . Activation of constitutive 5-hydroxytryptamine(1B) receptor by a series of mutations in the BBXXB motif: positioning of the third intracellular loop distal junction and its G(o)alpha protein interactions. Biochem J 1999; 343 (Part 2): 435–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hu Y, Li S . Survival regulation of leukemia stem cells. Cell Mol Life Sci 2016; 73: 1039–1050.

    Article  CAS  PubMed  Google Scholar 

  46. Cornet-Masana JM, Moreno-Martinez D, Lara-Castillo MC, Nomdedeu M, Etxabe A, Tesi N et al. Emetine induces chemosensitivity and reduces clonogenicity of acute myeloid leukemia cells. Oncotarget 2016; 7: 23239–23250.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Flasshove M, Strumberg D, Ayscue L, Mitchell BS, Tirier C, Heit W et al. Structural analysis of the deoxycytidine kinase gene in patients with acute myeloid leukemia and resistance to cytosine arabinoside. Leukemia 1994; 8: 780–785.

    CAS  PubMed  Google Scholar 

  48. Galmarini CM, Thomas X, Calvo F, Rousselot P, Rabilloud M, El Jaffari A et al. In vivo mechanisms of resistance to cytarabine in acute myeloid leukaemia. Br J Haematol 2002; 117: 860–868.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Y, Chen HX, Zhou SY, Wang SX, Zheng K, Xu DD et al. Sp1 and c-Myc modulate drug resistance of leukemia stem cells by regulating survivin expression through the ERK-MSK MAPK signaling pathway. Mol Cancer 2015; 14: 56.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Berenbaum MC . Criteria for analyzing interactions between biologically active agents. Adv Cancer Res 1981; 35: 269–335.

    Article  CAS  PubMed  Google Scholar 

  51. Chou TC, Talalay P . Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22: 27–55.

    Article  CAS  PubMed  Google Scholar 

  52. Pulte D, Gondos A, Brenner H . Expected long-term survival of patients diagnosed with acute myeloblastic leukemia during 2006-2010. Ann Oncol 2010; 21: 335–341.

    Article  CAS  PubMed  Google Scholar 

  53. Dizeyi N, Bjartell A, Nilsson E, Hansson J, Gadaleanu V, Cross N et al. Expression of serotonin receptors and role of serotonin in human prostate cancer tissue and cell lines. Prostate 2004; 59: 328–336.

    Article  CAS  PubMed  Google Scholar 

  54. Soll C, Jang JH, Riener MO, Moritz W, Wild PJ, Graf R et al. Serotonin promotes tumor growth in human hepatocellular cancer. Hepatology 2010; 51: 1244–1254.

    Article  CAS  PubMed  Google Scholar 

  55. New DC, Wong YH . Molecular mechanisms mediating the G protein-coupled receptor regulation of cell cycle progression. J Mol Signal 2007; 2: 2.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Charan J, Kantharia ND . How to calculate sample size in animal studies? J Pharmacol Pharmacother 2013; 4: 303–306.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Marta Bistagne for her administrative support and all members of the Risueño laboratory for helpful discussions. RMR is supported by Ramón y Cajal program of the Spanish Ministry of Economy (RYC-2011-07998), AE holds a contrato predoctoral para la formación de doctores fellowship (BES-2013-066388), and MN and MAT are supported by Premi Fi de Residència Emili Letang of Hospital Clínic. This work was supported by the Plan Nacional SAF2012-34352 (to RMR), AECC-JP Barcelona (to RMR), the Josep Carreras International Leukaemia Foundation (to RMR), l’Obra Social 'La Caixa'-Fundació Bancària 'La Caixa' (to RMR), RETICC RD12/0036/0010 (to JE and RMR) and FIS PI13/00999 (to JE).

Author contributions

AE, MCL-C, JMC-M, AB-M and MN: acquisition of data, analysis and interpretation of data, and revision of the manuscript; MP, MAT, MD-B and JE: revision of the manuscript and material support; RMR: conception and design, acquisition of data, analysis and interpretation of data and writing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R M Risueño.

Ethics declarations

Competing interests

The results presented in this paper have been patented. RMR is a shareholder of Leukos Biotech.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etxabe, A., Lara-Castillo, M., Cornet-Masana, J. et al. Inhibition of serotonin receptor type 1 in acute myeloid leukemia impairs leukemia stem cell functionality: a promising novel therapeutic target. Leukemia 31, 2288–2302 (2017). https://doi.org/10.1038/leu.2017.52

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.52

This article is cited by

Search

Quick links