Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute myeloid leukemia

Number of RUNX1 mutations, wild-type allele loss and additional mutations impact on prognosis in adult RUNX1-mutated AML

Abstract

RUNX1-mutated acute myeloid leukemia (AML) show a distinct pattern of genetic abnormalities and an adverse prognosis. We analyzed the impact of multiple RUNX1 mutations and RUNX1 wild-type (WT) loss in 467 AML with RUNX1 mutations (mut): (1) RUNX1 WT loss (n=53), (2) >1 RUNX1mut (n=94) and (3) 1 RUNX1mut (n=323). In 1 RUNX1mut, +8 was most frequent, whereas in WT loss +13 was the most abundant trisomy (+8: 66% vs 31%, P=0.022; +13: 15% vs 62%, P<0.001). Analyses of 28 genes in 163 selected cases revealed SRSF2 (39%), ASXL1 (36%), DNMT3A (19%), IDH2 (17%) and SF3B1 (17%) as most frequently mutated genes. RUNX1 WT loss showed a higher frequency of ASXL1mut compared with the other cases (50% vs 29%, P=0.009). Median overall survival (OS) in the total cohort was 14 months. WT loss (OS: 5 months) and >1 RUNX1mut (14 months) showed an adverse impact on prognosis compared with 1 RUNX1mut (22 months; P=0.002 and 0.048, respectively). Mutations in ASXL1 and 2 additional mutations correlated with shorter OS (10 vs 18 months, P=0.028; 12 vs 20 months, P=0.017). Thus, the number of RUNX1mut, RUNX1 WT loss and the number and type of additional mutations is biologically and clinically relevant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 2010; 116: 354–365.

    Article  CAS  PubMed  Google Scholar 

  2. Döhner H, Weisdorf DJ, Bloomfield CD . Acute myeloid leukemia. N Engl J Med 2015; 373: 1136–1152.

    Article  PubMed  Google Scholar 

  3. Ley TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson A et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059–2074, Cancer Genome Atlas Research Network.

    Article  PubMed  Google Scholar 

  4. Döhner H, Gaidzik VI . Impact of genetic features on treatment decisions in AML. Hematology Am Soc Hematol Educ Program 2011; 2011: 36–42.

    Article  PubMed  Google Scholar 

  5. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al. WHO Classification of Tumours of Haematopoietic and Lympoid Tissues. IARC: Lyon, France, 2008.

    Google Scholar 

  6. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM et al. The 2016 revision to the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia. Blood 2016; 127: 2391–2405.

    Article  CAS  PubMed  Google Scholar 

  7. Okuda T, Nishimura M, Nakao M, Fujita Y . RUNX1/AML1: a central player in hematopoiesis. Int J Hematol 2001; 74: 252–257.

    Article  CAS  PubMed  Google Scholar 

  8. Berardi MJ, Sun C, Zehr M . The Ig fold of the core binding factor alpha Runt domain is a member of a family of structurally and functionally related Ig-fold DNA-binding domains. Structure 1999; 7: 1247–1256.

    Article  CAS  PubMed  Google Scholar 

  9. Bravo J, Li Z, Speck NA, Warren AJ . The leukemia-associated AML1 (Runx1)-CBF beta complex functions as a DNA-induced molecular clamp. Nat Struct Biol 2001; 8: 371–378.

    Article  CAS  PubMed  Google Scholar 

  10. Bowers SR, Calero-Nieto FJ, Valeaux S, Fernandez-Fuentes N, Cockerill PN . 'Runx1 binds as a dimeric complex to overlapping Runx1 sites within a palindromic element in the human GM-CSF enhancer'. Nucleic Acids Res 2010; 38: 6124–6134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gaidzik VI, Bullinger L, Schlenk RF, Zimmermann AS, Röck J, Paschka P et al. RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML Study Group. J Clin Oncol 2011; 29: 1364–1372.

    Article  PubMed  Google Scholar 

  12. Gaidzik VI, Teleanu V, Papaemmanuil E, Weber D, Paschka P, Hahn J et al. RUNX1 mutations in acute myeloid leukemia are associated with distinct clinico-pathologic and genetic features. Leukemia 2016; 30: 2160–2168.

    Article  CAS  PubMed  Google Scholar 

  13. Osato M, Asou N, Abdalla E, Hoshino K, Yamasaki H, Okubo T et al. Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2alphaB gene associated with myeloblastic leukemias. Blood 1999; 93: 1817–1824.

    CAS  PubMed  Google Scholar 

  14. Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia 2014; 28: 241–247.

    Article  CAS  PubMed  Google Scholar 

  15. Grossmann V, Kern W, Harbich S, Alpermann T, Jeromin S, Schnittger S et al. Prognostic relevance of RUNX1 mutations in T-cell acute lymphoblastic leukemia. Haematologica 2011; 96: 1874–1877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gelsi-Boyer V, Trouplin V, Adélaïde J, Aceto N, Remy V, Pinson S et al. Genome profiling of chronic myelomonocytic leukemia: frequent alterations of RAS and RUNX1 genes. BMC Cancer 2008; 8: 299.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Imai Y, Kurokawa M, Izutsu K, Hangaishi A, Takeuchi K, Maki K et al. Mutations of the AML1 gene in myelodysplastic syndrome and their functional implications in leukemogenesis. Blood 2000; 96: 3154–3160.

    CAS  PubMed  Google Scholar 

  18. Owen CJ, Toze CL, Koochin A, Forrest DL, Smith CA, Stevens JM et al. Five new pedigrees with inherited RUNX1 mutations causing familial platelet disorder with propensity to myeloid malignancy (FPD/AML). Blood 2008; 112: 4639–4645.

    Article  CAS  PubMed  Google Scholar 

  19. Haferlach T, Stengel A, Eckstein S, Perglerová K, Alpermann T, Kern W et al. The new provisional WHO entity 'RUNX1 mutated AML' shows specific genetics but no prognostic influence of dysplasia. Leukemia 2016; 30: 2109–2112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Quentin S, Cuccuini W, Ceccaldi R, Nibourel O, Pondarre C, Pagès MP et al. Myelodysplasia and leukemia of Fanconi anemia are associated with a specific pattern of genomic abnormalities that includes cryptic RUNX1/AML1 lesions. Blood 2011; 117: e161–e170.

    Article  CAS  PubMed  Google Scholar 

  21. Skokowa J, Steinemann D, Katsman-Kuipers JE, Zeidler C, Klimenkova O, Unalan M et al. Cooperativity of RUNX1 and CSF3R mutations in severe congenital neutropenia: a unique pathway in myeloid leukemogenesis. Blood 2014; 123: 2229–2237.

    Article  CAS  PubMed  Google Scholar 

  22. Harada H, Harada Y, Tanaka H, Kimura A, Inaba T . Implications of somatic mutations in the AML1 gene in radiation-associated and therapy-related myelodysplastic syndrome/acute myeloid leukemia. Blood 2003; 101: 673–680.

    Article  CAS  PubMed  Google Scholar 

  23. Jongmans MC, Kuiper RP, Carmichael CL, Wilkins EJ, Dors N, Carmagnac A et al. Novel RUNX1 mutations in familial platelet disorder with enhanced risk for acute myeloid leukemia: clues for improved identification of the FPD/AML syndrome. Leukemia 2010; 24: 242–246.

    Article  CAS  PubMed  Google Scholar 

  24. Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 1999; 23: 166–175.

    Article  CAS  PubMed  Google Scholar 

  25. Haferlach T, Schoch C, Löffler H, Gassmann W, Kern W, Schnittger S et al. Morphologic dysplasia in de novo acute myeloid leukemia (AML) is related to unfavorable cytogenetics but has no independent prognostic relevance under the conditions of intensive induction therapy: results of a multiparameter analysis from the German AML Cooperative Group studies. J Clin Oncol 2003; 21: 256–265.

    Article  PubMed  Google Scholar 

  26. Kern W, Voskova D, Schoch C, Hiddemann W, Schnittger S, Haferlach T . Determination of relapse risk based on assessment of minimal residual disease during complete remission by multiparameter flow cytometry in unselected patients with acute myeloid leukemia. Blood 2004; 104: 3078–3085.

    Article  CAS  PubMed  Google Scholar 

  27. Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao E et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia 1995; 9: 1783–1786.

    CAS  PubMed  Google Scholar 

  28. Schoch C, Schnittger S, Bursch S, Gerstner D, Hochhaus A, Berger U et al. Comparison of chromosome banding analysis, interphase- and hypermetaphase-FISH, qualitative and quantitative PCR for diagnosis and for follow-up in chronic myeloid leukemia: a study on 350 cases. Leukemia 2002; 16: 53–59.

    Article  CAS  PubMed  Google Scholar 

  29. McGowan-Jordan J, Simons A, Schmid M . An International System for Human Cytogenetic Nomenclature. Karger: Basel, New York, 2016.

    Google Scholar 

  30. MacDonald JR, Ziman R, Yuen RK, Feuk L, Scherer SW . The Database of Genomic Variants: a curated collection of structural variation in the human genome. Nucleic Acids Res 2014; 42: D986–D992.

    Article  CAS  PubMed  Google Scholar 

  31. Grimwade D, Ivey A, Huntly BJ . Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood 2016; 127: 29–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 2016; 374: 2209–2221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P et alChronic Myeloid Disorders Working Group of the International Cancer Genome Consortium.. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 2013; 122: 3616–3627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bejar R, Stevenson KE, Caughey BA, Abdel-Wahab O, Steensma DP, Galili N et al. Validation of a prognostic model and the impact of mutations in patients with lower-risk myelodysplastic syndromes. J Clin Oncol 2012; 30: 3376–3382.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Milosevic JD, Puda A, Malcovati L, Berg T, Hofbauer M, Stukalov A et al. Clinical significance of genetic aberrations in secondary acute myeloid leukemia. Am J Hematol 2012; 87: 1010–1016.

    Article  CAS  PubMed  Google Scholar 

  36. Dicker F, Haferlach C, Sundermann J, Wendland N, Weiss T, Kern W et al. Mutation analysis for RUNX1, MLL-PTD, FLT3-ITD, NPM1 and NRAS in 269 patients with MDS or secondary AML. Leukemia 2010; 24: 1528–1532.

    Article  CAS  PubMed  Google Scholar 

  37. Mesa RA, Hanson CA, Ketterling RP, Schwager S, Knudson RA, Tefferi A . Trisomy 13: prevalence and clinicopathologic correlates of another potentially lenalidomide-sensitive cytogenetic abnormality. Blood 2009; 113: 1200–1201.

    Article  CAS  PubMed  Google Scholar 

  38. Dicker F, Haferlach C, Kern W, Haferlach T, Schnittger S . Trisomy 13 is strongly associated with AML1/RUNX1 mutations and increased FLT3 expression in acute myeloid leukemia. Blood 2007; 110: 1308–1316.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all co-workers at the MLL Munich Leukemia Laboratory for approaching together many aspects in the field of leukemia diagnostics and research by their dedicated work. We would like to thank all physicians for providing and caring for patients as well as collecting data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Stengel.

Ethics declarations

Competing interests

CH, WK and TH declare part ownership of Munich Leukemia Laboratory (MLL). AS, MM and NN are employed by the MLL Munich Leukemia Laboratory. KP is employed by MLL2.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stengel, A., Kern, W., Meggendorfer, M. et al. Number of RUNX1 mutations, wild-type allele loss and additional mutations impact on prognosis in adult RUNX1-mutated AML. Leukemia 32, 295–302 (2018). https://doi.org/10.1038/leu.2017.239

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.239

This article is cited by

Search

Quick links