Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute lymphoblastic leukemia

TCRα rearrangements identify a subgroup of NKL-deregulated adult T-ALLs associated with favorable outcome

Abstract

T-cell acute lymphoblastic leukemia (T-ALL) results from leukemic transformation of T-cell precursors arrested at specific differentiation stages, including an ‘early-cortical’ thymic maturation arrest characterized by expression of cytoplasmic TCRβ but no surface T-cell receptor (TCR) and frequent ectopic expression of the TLX1/3 NK-like homeotic proteins (NKL). We designed a TCRα VJC PCR to identify clonal TCRα rearrangements in 32% of 127 T-ALLs, including 0/52 immature/TCRγδ lineage cases and 41/75 (55%) TCRαβ lineage cases. Amongst the latter, TCRα rearrangements were not identified in 30/54 (56%) of IMβ/pre-αβ early-cortical T-ALLs, of which the majority (21/30) expressed TLX1/3. We reasoned that the remaining T-ALLs might express other NKL proteins, so compared transcript levels of 46 NKL in T-ALL and normal thymic subpopulations. Ectopic overexpression of 10 NKL genes, of which six are unreported in T-ALL (NKX2-3, BARHL1, BARX2, EMX2, LBX2 and MSX2), was detectable in 17/104 (16%) T-ALLs. Virtually all NKL overexpressing T-ALLs were TCRα unrearranged and ectopic NKL transcript expression strongly repressed Eα activity, suggesting that ectopic NKL expression is the major determinant in early-cortical thymic T-ALL maturation arrest. This immunogenetic T-ALL subtype, defined by TCRβ VDJ but no TCRα VJ rearrangement, is associated with a favorable outcome in GRAALL-treated adult T-ALLs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Spits H . Development of alphabeta T cells in the human thymus. Nat Rev Immunol 2002; 2: 760–772.

    Article  CAS  Google Scholar 

  2. Dik WA, Pike-Overzet K, Weerkamp F, de Ridder D, de Haas EF, Baert MR et al. New insights on human T cell development by quantitative T cell receptor gene rearrangement studies and gene expression profiling. J Exp Med 2005; 201: 1715–1723.

    Article  CAS  Google Scholar 

  3. Cieslak A, Le Noir S, Trinquand A, Lhermitte L, Franchini DM, Villarese P et al. RUNX1-dependent RAG1 deposition instigates human TCR-delta locus rearrangement. J Exp Med 2014; 211: 1821–1832.

    Article  CAS  Google Scholar 

  4. von Boehmer H, Aifantis I, Azogui O, Feinberg J, Saint-Ruf C, Zober C et al. Crucial function of the pre-T-cell receptor (TCR) in TCR beta selection, TCR beta allelic exclusion and alpha beta versus gamma delta lineage commitment. Immunol Rev 1998; 165: 111–119.

    Article  CAS  Google Scholar 

  5. Krangel MS, Hernandez-Munain C, Lauzurica P, McMurry M, Roberts JL, Zhong XP . Developmental regulation of V(D)J recombination at the TCR alpha/delta locus. Immunol Rev 1998; 165: 131–147.

    Article  CAS  Google Scholar 

  6. Bassing CH, Tillman RE, Woodman BB, Canty D, Monroe RJ, Sleckman BP et al. T cell receptor (TCR) alpha/delta locus enhancer identity and position are critical for the assembly of TCR delta and alpha variable region genes. Proc Natl Acad Sci USA 2003; 100: 2598–2603.

    Article  CAS  Google Scholar 

  7. Sleckman BP, Bardon CG, Ferrini R, Davidson L, Alt FW . Function of the TCR alpha enhancer in alphabeta and gammadelta T cells. Immunity 1997; 7: 505–515.

    Article  CAS  Google Scholar 

  8. Ho IC, Yang LH, Morle G, Leiden JM . A T-cell-specific transcriptional enhancer element 3' of C alpha in the human T-cell receptor alpha locus. Proc Natl Acad Sci USA 1989; 86: 6714–6718.

    Article  CAS  Google Scholar 

  9. Ho IC, Bhat NK, Gottschalk LR, Lindsten T, Thompson CB, Papas TS et al. Sequence-specific binding of human Ets-1 to the T cell receptor alpha gene enhancer. Science 1990; 250: 814–818.

    Article  CAS  Google Scholar 

  10. Giese K, Kingsley C, Kirshner JR, Grosschedl R . Assembly and function of a TCR alpha enhancer complex is dependent on LEF-1-induced DNA bending and multiple protein-protein interactions. Genes Dev 1995; 9: 995–1008.

    Article  CAS  Google Scholar 

  11. Roberts JL, Lauzurica P, Krangel MS . Developmental regulation of VDJ recombination by the core fragment of the T cell receptor alpha enhancer. J Exp Med 1997; 185: 131–140.

    Article  CAS  Google Scholar 

  12. Asnafi V, Radford-Weiss I, Dastugue N, Bayle C, Leboeuf D, Charrin C et al. CALM-AF10 is a common fusion transcript in T-ALL and is specific to the TCRgammadelta lineage. Blood 2003; 102: 1000–1006.

    Article  CAS  Google Scholar 

  13. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1: 75–87.

    Article  CAS  Google Scholar 

  14. Aifantis I, Raetz E, Buonamici S . Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol 2008; 8: 380–390.

    Article  CAS  Google Scholar 

  15. Garcia-Fernandez J . Hox, ParaHox, ProtoHox: facts and guesses. Heredity 2005; 94: 145–152.

    Article  CAS  Google Scholar 

  16. Qian YQ, Billeter M, Otting G, Muller M, Gehring WJ, Wuthrich K . The structure of the Antennapedia homeodomain determined by NMR spectroscopy in solution: comparison with prokaryotic repressors. Cell 1989; 59: 573–580.

    Article  CAS  Google Scholar 

  17. Holland PW, Booth HA, Bruford EA . Classification and nomenclature of all human homeobox genes. BMC Biol 2007; 5: 47.

    Article  Google Scholar 

  18. Dadi S, Le Noir S, Payet-Bornet D, Lhermitte L, Zacarias-Cabeza J, Bergeron J et al. TLX homeodomain oncogenes mediate T cell maturation arrest in T-ALL via interaction with ETS1 and suppression of TCRalpha gene expression. Cancer Cell 2012; 21: 563–576.

    Article  CAS  Google Scholar 

  19. Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N et al. Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia - a Europe Against Cancer program. Leukemia 2003; 17: 2318–2357.

    Article  CAS  Google Scholar 

  20. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  21. Ferrando AA, Herblot S, Palomero T, Hansen M, Hoang T, Fox EA et al. Biallelic transcriptional activation of oncogenic transcription factors in T-cell acute lymphoblastic leukemia. Blood 2004; 103: 1909–1911.

    Article  CAS  Google Scholar 

  22. Asnafi V, Beldjord K, Boulanger E, Comba B, Le Tutour P, Estienne MH et al. Analysis of TCR, pT alpha, and RAG-1 in T-acute lymphoblastic leukemias improves understanding of early human T-lymphoid lineage commitment. Blood 2003; 101: 2693–2703.

    Article  CAS  Google Scholar 

  23. Asnafi V, Beldjord K, Libura M, Villarese P, Millien C, Ballerini P et al. Age-related phenotypic and oncogenic differences in T-cell acute lymphoblastic leukemias may reflect thymic atrophy. Blood 2004; 104: 4173–4180.

    Article  CAS  Google Scholar 

  24. Homminga I, Pieters R, Langerak AW, de Rooi JJ, Stubbs A, Verstegen M et al. Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. Cancer Cell 2011; 19: 484–497.

    Article  CAS  Google Scholar 

  25. Le Noir S, Ben Abdelali R, Lelorch M, Bergeron J, Sungalee S, Payet-Bornet D et al. Extensive molecular mapping of TCRalpha/delta- and TCRbeta-involved chromosomal translocations reveals distinct mechanisms of oncogene activation in T-ALL. Blood 2012; 120: 3298–3309.

    Article  CAS  Google Scholar 

  26. Przybylski GK, Dik WA, Grabarczyk P, Wanzeck J, Chudobska P, Jankowski K et al. The effect of a novel recombination between the homeobox gene NKX2-5 and the TRD locus in T-cell acute lymphoblastic leukemia on activation of the NKX2-5 gene. Haematologica 2006; 91: 317–321.

    CAS  PubMed  Google Scholar 

  27. Haga SB, Fu S, Karp JE, Ross DD, Williams DM, Hankins WD et al. BP1, a new homeobox gene, is frequently expressed in acute leukemias. Leukemia 2000; 14: 1867–1875.

    Article  CAS  Google Scholar 

  28. Homminga I, Pieters R, Meijerink JP . NKL homeobox genes in leukemia. Leukemia 2012; 26: 572–581.

    Article  CAS  Google Scholar 

  29. Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC, Pei D et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet 2009; 10: 147–156.

    Article  CAS  Google Scholar 

  30. Armstrong SA, Look AT . Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol 2005; 23: 6306–6315.

    Article  CAS  Google Scholar 

  31. De Keersmaecker K, Marynen P, Cools J . Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia. Haematologica 2005; 90: 1116–1127.

    CAS  PubMed  Google Scholar 

  32. Graux C, Cools J, Michaux L, Vandenberghe P, Hagemeijer A . Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia 2006; 20: 1496–1510.

    Article  CAS  Google Scholar 

  33. Van Vlierberghe P, Pieters R, Beverloo HB, Meijerink JP . Molecular-genetic insights in paediatric T-cell acute lymphoblastic leukaemia. Br J Haematol 2008; 143: 153–168.

    Article  CAS  Google Scholar 

  34. Soulier J, Clappier E, Cayuela JM, Regnault A, Garcia-Peydro M, Dombret H et al. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 2005; 106: 274–286.

    Article  CAS  Google Scholar 

  35. Merabet S, Pradel J, Graba Y . Getting a molecular grasp on Hox contextual activity. Trends Genet 2005; 21: 477–480.

    Article  CAS  Google Scholar 

  36. Shen WF, Krishnan K, Lawrence HJ, Largman C . The HOX homeodomain proteins block CBP histone acetyltransferase activity. Mol Cell Biol 2001; 21: 7509–7522.

    Article  CAS  Google Scholar 

  37. Mann RS, Lelli KM, Joshi R . Hox specificity unique roles for cofactors and collaborators. Curr Top Dev Biol 2009; 88: 63–101.

    Article  CAS  Google Scholar 

  38. Owens BM, Zhu YX, Suen TC, Wang PX, Greenblatt JF, Goss PE et al. Specific homeodomain-DNA interactions are required for HOX11-mediated transformation. Blood 2003; 101: 4966–4974.

    Article  CAS  Google Scholar 

  39. Bergeron J, Clappier E, Radford I, Buzyn A, Millien C, Soler G et al. Prognostic and oncogenic relevance of TLX1/HOX11 expression level in T-ALLs. Blood 2007; 110: 2324–2330.

    Article  CAS  Google Scholar 

  40. Bernard OA, Busson-LeConiat M, Ballerini P, Mauchauffe M, Della Valle V, Monni R et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia 2001; 15: 1495–1504.

    Article  CAS  Google Scholar 

  41. Nagel S, Kaufmann M, Drexler HG, MacLeod RA . The cardiac homeobox gene NKX2-5 is deregulated by juxtaposition with BCL11B in pediatric T-ALL cell lines via a novel t(5;14)(q35.1;q32.2). Cancer Res 2003; 63: 5329–5334.

    CAS  PubMed  Google Scholar 

  42. Dunwell TL, Hesson LB, Pavlova T, Zabarovska V, Kashuba V, Catchpoole D et al. Epigenetic analysis of childhood acute lymphoblastic leukemia. Epigenetics 2009; 4: 185–193.

    Article  CAS  Google Scholar 

  43. Kusy S, Gerby B, Goardon N, Gault N, Ferri F, Gerard D et al. NKX3.1 is a direct TAL1 target gene that mediates proliferation of TAL1-expressing human T cell acute lymphoblastic leukemia. J Exp Med 2010; 207: 2141–2156.

    Article  CAS  Google Scholar 

  44. Bell A, Bell D, Weber RS, El-Naggar AK . CpG island methylation profiling in human salivary gland adenoid cystic carcinoma. Cancer 2011; 117: 2898–2909.

    Article  CAS  Google Scholar 

  45. Furuta J, Nobeyama Y, Umebayashi Y, Otsuka F, Kikuchi K, Ushijima T . Silencing of Peroxiredoxin 2 and aberrant methylation of 33 CpG islands in putative promoter regions in human malignant melanomas. Cancer Res 2006; 66: 6080–6086.

    Article  CAS  Google Scholar 

  46. Kuang SQ, Tong WG, Yang H, Lin W, Lee MK, Fang ZH et al. Genome-wide identification of aberrantly methylated promoter associated CpG islands in acute lymphocytic leukemia. Leukemia 2008; 22: 1529–1538.

    Article  CAS  Google Scholar 

  47. Okamoto J, Hirata T, Chen Z, Zhou HM, Mikami I, Li H et al. EMX2 is epigenetically silenced and suppresses growth in human lung cancer. Oncogene 2010; 29: 5969–5975.

    Article  CAS  Google Scholar 

  48. Stevens TA, Meech R . BARX2 and estrogen receptor-alpha (ESR1) coordinately regulate the production of alternatively spliced ESR1 isoforms and control breast cancer cell growth and invasion. Oncogene 2006; 25: 5426–5435.

    Article  CAS  Google Scholar 

  49. Tellez CS, Shen L, Estecio MR, Jelinek J, Gershenwald JE, Issa JP . CpG island methylation profiling in human melanoma cell lines. Melanoma Res 2009; 19: 146–155.

    Article  CAS  Google Scholar 

  50. Robles EF, Mena-Varas M, Barrio L, Merino-Cortes SV, Balogh P, Du MQ et al. Homeobox NKX2-3 promotes marginal-zone lymphomagenesis by activating B-cell receptor signalling and shaping lymphocyte dynamics. Nat Commun 2015; 7: 11889.

    Article  Google Scholar 

  51. Tanaka Y, Era T, Nishikawa S, Kawamata S . Forced expression of Nanog in hematopoietic stem cells results in a gammadeltaT-cell disorder. Blood 2007; 110: 107–115.

    Article  CAS  Google Scholar 

  52. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003; 17: 2257–2317.

    Article  CAS  Google Scholar 

  53. Bruggemann M, White H, Gaulard P, Garcia-Sanz R, Gameiro P, Oeschger S et al. Powerful strategy for polymerase chain reaction-based clonality assessment in T-cell malignancies Report of the BIOMED-2 Concerted Action BHM4 CT98-3936. Leukemia 2007; 21: 215–221.

    Article  CAS  Google Scholar 

  54. Sherwood AM, Desmarais C, Livingston RJ, Andriesen J, Haussler M, Carlson CS et al. Deep sequencing of the human TCRgamma and TCRbeta repertoires suggests that TCRbeta rearranges after alphabeta and gammadelta T cell commitment. Sci Transl Med 2011; 3: 90ra–61.

    Article  Google Scholar 

  55. Ben Abdelali R, Asnafi V, Petit A, Micol JB, Callens C, Villarese P et al. The prognosis of CALM-AF10-positive adult T-cell acute lymphoblastic leukemias depends on the stage of maturation arrest. Haematologica 2013; 98: 1711–1717.

    Article  Google Scholar 

Download references

Acknowledgements

We thank all French, Swiss and Belgian participants, clinicians, biologists and clinical research assistants, in the GRAALL 2003-2005 trials for collecting and providing data and samples. We thank the IBiSA ‘Transcriptomics and Genomics Marseille-Luminy (TGML)’ platform for sequencing of RNAseq samples. We thank the tumorothèque plateform of Necker’s hospital APHP.

Author contributions

PV, EAM and VA wrote the manuscript. PV, CL, SLN, RBA, AC, AT, MB, ML, MT, AL and SP performed research and/or data analysis. NI, HD, AP and NB provided clinical material and data analysis from the GRAALL trials. VA oversaw conceptual development of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Asnafi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villarese, P., Lours, C., Trinquand, A. et al. TCRα rearrangements identify a subgroup of NKL-deregulated adult T-ALLs associated with favorable outcome. Leukemia 32, 61–71 (2018). https://doi.org/10.1038/leu.2017.176

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.176

This article is cited by

Search

Quick links