Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptional control and signal transduction, cell cycle

PPAR-delta modulates membrane cholesterol and cytokine signaling in malignant B cells

Abstract

A deeper understanding of the mechanisms that underlie aberrant signal transduction in B-cell cancers such as chronic lymphocytic leukemia (CLL) may reveal new treatment strategies. The lipid-activated nuclear receptor peroxisome proliferator-activated receptor delta (PPARδ) accounts for a number of properties of aggressive cancers and was found to enhance Janus kinase (JAK)-mediated phosphorylation of signal transducer and activator of transcription (STAT) proteins in B lymphoma cell lines and primary CLL cells. Autocrine production of cytokines such as IL10 and interferon-beta was not increased by PPARδ but signaling responses to these cytokines were amplified and associated with increased cholesterol biosynthesis and plasma membrane levels. Plasmalemmal cholesterol and STAT phosphorylation from type 1 interferons (IFNs) were increased by PPARδ agonists, transgenes and exogenous cholesterol, and decreased by cyclodextrin, PPARD deletion and chemical PPARδ inhibitors. Functional consequences of PPARδ-mediated perturbation of IFN signaling included impaired upregulation of co-stimulatory molecules. These observations suggest PPARδ modulates signaling processes in malignant B cells in part by altering cholesterol metabolism and changes the outcomes of signaling from cytokines such as IFNs. PPARδ antagonists may have therapeutic activity as anti-leukemic signal transduction modulators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Spaner D, Lee E, Shi Y, Wen F, Li Y, Tung S et al. PPAR-alpha is a therapeutic target for chronic lymphocytic leukemia. Leukemia 2013; 27: 1090–1099.

    Article  CAS  Google Scholar 

  2. Harmon GS, Lam MT, Glass CK . PPARs and lipid ligands in inflammation and metabolism. Chem Rev 2011; 111: 6321–6340.

    Article  CAS  Google Scholar 

  3. Wang X, Wang G, Shi Y, Sun L, Gorczynski R, Li YJ et al. PPAR-delta promotes survival of breast cancer cells in harsh metabolic conditions. Oncogenesis 2016; 5: e232.

    Article  CAS  Google Scholar 

  4. Khozoie C, Borland MG, Zhu B, Baek S, John S, Hager GL et al. Analysis of the peroxisome proliferator-activated receptor-beta/delta (PPARbeta/delta) cistrome reveals novel co-regulatory role of ATF4. BMC Genomics 2012; 13: 665.

    Article  CAS  Google Scholar 

  5. Abdollahi A, Schwager C, Kleeff J, Esposito I, Domhan S, Peschke P et al. Transcriptional network governing the angiogenic switch in human pancreatic cancer. Proc Natl Acad Sci USA 2007; 104: 12890–12895.

    Article  CAS  Google Scholar 

  6. Beyaz S, Mana MD, Roper J, Kedrin D, Saadatpour A, Hong SJ et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 2016; 53: 53–58.

    Article  Google Scholar 

  7. Mao F, Xu M, Zuo X, Yu J, Xu W, Moussalli MJ et al. 15-Lipoxygenase-1 suppression of colitis-associated colon cancer through inhibition of the IL-6/STAT3 signaling pathway. FASEB J 2015; 29: 2359–2370.

    Article  CAS  Google Scholar 

  8. Wang D, Fu L, Ning W, Guo L, Sun X, Dey SK et al. Peroxisome proliferator-activated receptor delta promotes colonic inflammation and tumor growth. Proc Natl Acad Sci USA 2014; 111: 7084–7089.

    Article  CAS  Google Scholar 

  9. Zuo X, Xu M, Yu J, Wu Y, Moussalli MJ, Manyam GC et al. Potentiation of colon cancer susceptibility in mice by colonic epithelial PPAR-delta/beta overexpression. J Natl Cancer Inst 2014; 106, dju052.

  10. Li YJ, Sun L, Shi Y, Wang G, Wang X, Dunn SE et al. PPAR-delta promotes survival of CLL cells in energetically unfavorable conditions. Leukemia 2017; e-pub ahead of print 31 January 2017; doi:10.1038/leu.2016.395.

    Article  CAS  Google Scholar 

  11. Her NG, Jeong SI, Cho K, Ha TK, Han J, Ko KP et al. PPARdelta promotes oncogenic redirection of TGF-beta1 signaling through the activation of the ABCA1-Cav1 pathway. Cell Cycle 2013; 12: 1521–1535.

    Article  CAS  Google Scholar 

  12. Tomic J, Lichty B, Spaner DE . Aberrant interferon-signaling is associated with aggressive chronic lymphocytic leukemia. Blood 2011; 117: 2668–2680.

    Article  CAS  Google Scholar 

  13. Maekawa M, Fairn GD . Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol. J Cell Sci 2015; 128: 1422–1433.

    Article  CAS  Google Scholar 

  14. Dunn SE, Bhat R, Straus DS, Sobel RA, Axtell R, Johnson A et al. Peroxisome proliferator-activated receptor delta limits the expansion of pathogenic Th cells during central nervous system autoimmunity. J Exp Med 2010; 207: 1599–1608.

    Article  CAS  Google Scholar 

  15. Listenberger LL, Brown DA . Fluorescent detection of lipid droplets and associated proteins. Curr Protoc Cell Biol 2016; 71: 4.31.1–4.31.14.

    Article  Google Scholar 

  16. Zidovetzki R, Levitan I . Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. Biochim Biophys Acta 2007; 1768: 1311–1324.

    Article  CAS  Google Scholar 

  17. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006; 10: 515–527.

    Article  CAS  Google Scholar 

  18. Spaner DE, Wang G, McCaw L, Li Y, Disperati P, Cussen M et al. Activity of the janus kinase inhibitor Ruxolitinib in chronic lymphocytic leukemia: results of a phase II trial. Haematologica 2016; 101: e192–e195.

    Article  CAS  Google Scholar 

  19. Li Y, Shi Y, McCaw L, Li YJ, Zhu F, Gorczynski R et al. Microenvironmental interleukin-6 suppresses toll-like receptor signaling in human leukemia cells through miR-17/19A. Blood 2015; 126: 766–778.

    Article  CAS  Google Scholar 

  20. Fang L, Zhang M, Li Y, Liu Y, Cui Q, Wang N . PPARgene: a database of experimentally verified and computationally predicted PPAR target genes. PPAR Res 2016; 2016: 6042162.

    Article  Google Scholar 

  21. Collins RJ, Verschuer LA, Harmon BV, Prentice RL, Pope JH, Kerr JF . Spontaneous programmed death (apoptosis) of B-CLL cells following their culture in vitro. Br J Haematol 1989; 71: 343–350.

    Article  CAS  Google Scholar 

  22. Lévy C, Frecha C, Costa C, Rachinel N, Salles G, Cosset FL et al. Lentiviral vectors and transduction of human cancer B cells. Blood 2010; 116: 498–500.

    Article  Google Scholar 

  23. Hammond C, Shi Y, Mena J, Tomic J, Cervi D, He L et al. Effect of serum and antioxidants on the immunogenicity of protein kinase C-activated CLL cells. J Immunother 2005; 28: 28–39.

    Article  CAS  Google Scholar 

  24. Zent CS, Chen JB, Kurten RC, Kaushal GP, Lacy HM, Schichman SA . Alemtuzumab (CAMPATH 1H) does not kill CLL cells in serum free medium. Leuk Res 2004; 28: 495–507.

    Article  CAS  Google Scholar 

  25. Childs CB, Proper JA, Tucker RF, Moses HL . Serum contains a platelet-derived transforming growth factor. Proc Natl Acad Sci USA 1982; 79: 5312–5316.

    Article  CAS  Google Scholar 

  26. Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E et al. TGF-beta receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J 1997; 16: 5353–5362.

    Article  CAS  Google Scholar 

  27. Longo PG, Laurenti L, Gobessi S, Sica S, Leone G, Efremov DG . The Akt/Mcl-1 pathway plays a prominent role in mediating antiapoptotic signals downstream of the B-cell receptor in chronic lymphocytic leukemia B cells. Blood 2008; 111: 846–855.

    Article  CAS  Google Scholar 

  28. Rozovski U, Wu JY, Harris DM, Liu Z, Li P, Hazan-Halevy I et al. Stimulation of the B-cell receptor activates the JAK2/STAT3 signaling pathway in CLL cells. Blood 2014; 123: 3797–3802.

    Article  CAS  Google Scholar 

  29. Mackenzie JM, Khromykh AA, Parton RG . Cholesterol manipulation by West Nile virus perturbs the cellular immune response. Cell Host Microbe 2007; 2: 229–239.

    Article  CAS  Google Scholar 

  30. Skogsberg J, Kannisto K, Cassel TN, Hamsten A, Eriksson P, Ehrenborg E . Evidence that peroxisome proliferator-activated receptor delta influences cholesterol metabolism in men. Arterioscler Thromb Vasc Biol 2003; 23: 637–643.

    Article  CAS  Google Scholar 

  31. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 2004; 6: 1–6.

    Article  CAS  Google Scholar 

  32. Haferlach T, Kohlmann A, Wieczorek L, Basso G, Kronnie GT, Bene MC et al. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group. J Clin Oncol 2010; 28: 2529–2537.

    Article  CAS  Google Scholar 

  33. Lieber S, Scheer F, Meissner W, Naruhn S, Adhikary T, Muller-Brusselbach S et al. DG172: an orally bioavailable PPARbeta/delta-selective ligand with inverse agonistic properties. J Med Chem 2012; 55: 2858–2868.

    Article  CAS  Google Scholar 

  34. Shi Y, White D, He L, Miller RL, Spaner DE . Toll-like receptor-7 tolerizes malignant B cells and enhances killing by cytotoxic agents. Cancer Res 2007; 67: 1823–1831.

    Article  CAS  Google Scholar 

  35. Barish GD, Atkins AR, Downes M, Olson P, Chong LW, Nelson M et al. PPARdelta regulates multiple proinflammatory pathways to suppress atherosclerosis. Proc Natl Acad Sci USA 2008; 105: 4271–4276.

    Article  CAS  Google Scholar 

  36. Lange Y, Steck TL . Active membrane cholesterol as a physiological effector. Chem Phys Lipids 2016; 199: 74–93.

    Article  CAS  Google Scholar 

  37. Fielding CJ, Fielding PE . Membrane cholesterol and the regulation of signal transduction. Biochem Soc Trans 2004; 32 (Pt 1): 65–69.

    Article  CAS  Google Scholar 

  38. Beyaz S, Yilmaz O . Molecular pathways: dietary regulation of stemness and tumor initiation by the PPARδ pathway. Clin Cancer Res 2016; 22: 5636–5641.

    Article  CAS  Google Scholar 

  39. Holst D, Luquet S, Nogueira V, Kristiansen K, Leverve X, Grimaldi PA . Nutritional regulation and role of peroxisome proliferator-activated receptor delta in fatty acid catabolism in skeletal muscle. Biochim Biophys Acta 2003; 1633: 43–50.

    Article  CAS  Google Scholar 

  40. Rader DJ . Molecular regulation of HDL metabolism and function: implications for novel therapies. J Clin Invest 2006; 116: 3090–3100.

    Article  CAS  Google Scholar 

  41. Zaidi N, Swinnen JV, Smans K . ATP-citrate lyase: a key player in cancer metabolism. Cancer Res 2012; 72: 3709–3714.

    Article  CAS  Google Scholar 

  42. Schreiber G, Piehler J . The molecular basis for functional plasticity in type I interferon signaling. Trends Immunol 2015; 36: 139–149.

    Article  CAS  Google Scholar 

  43. Marchetti M, Monier MN, Fradagrada A, Mitchell K, Baychelier F, Eid P et al. Stat-mediated signaling induced by type I and type II interferons (IFNs) is differentially controlled through lipid microdomain association and clathrin-dependent endocytosis of IFN receptors. Mol Biol Cell 2006; 17: 2896–2909.

    Article  CAS  Google Scholar 

  44. Kotenko SV, Pestka S . Jak-Stat signal transduction pathway through the eyes of cytokine class II receptor complexes. Oncogene 2000; 19: 2557–2565.

    Article  CAS  Google Scholar 

  45. Pollock CB, Yin Y, Yuan H, Zeng X, King S, Li X et al. PPARδ activation acts cooperatively with 3-phosphoinositide-dependent protein kinase-1 to enhance mammary tumorigenesis. PLoS ONE 2011; 6: e16215.

    Article  CAS  Google Scholar 

  46. Jacinto E, Facchinetti V, Liu D, Soto N, Wei S, Jung SY et al. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity. Cell 2006; 127: 125–137.

    Article  CAS  Google Scholar 

  47. Manning BD, Toker A . AKT/PKB signaling: navigating the network. Cell 2017; 169: 381–405.

    Article  CAS  Google Scholar 

  48. York AG, Williams KJ, Argus JP, Zhou QD, Brar G, Vergnes L et al. Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling. Cell 2015; 163: 1716–1729.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by CIHR grant MOP1304, CIHR grant MOP 110952, the Leukemia and Lymphoma Society of Canada (DS), CIHR grant MOP133656 (GDF), NSFC (China) grant 81372456 and the Fund for the 8th group of Fostering Talents in Jilin Province of China JRZX8 (Y-JL). LS was supported by the China Scholarship Council (CSC 201506170134). We thank Peppi Prasit (Inception Sciences, San Diego, CA) for NXT1511 and Prof Dr Wibke E Diederich (Center for Tumor Biology and Immunology, Core Facility Medicinal Chemistry, Philipps-Universität Marburg) for DG172.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y-J Li or D E Spaner.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Shi, Y., Wang, G. et al. PPAR-delta modulates membrane cholesterol and cytokine signaling in malignant B cells. Leukemia 32, 184–193 (2018). https://doi.org/10.1038/leu.2017.162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2017.162

This article is cited by

Search

Quick links