Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic lymphocytic leukemia

CD49d prevails over the novel recurrent mutations as independent prognosticator of overall survival in chronic lymphocytic leukemia

Abstract

CD49d, the alpha-chain of the integrin heterodimer α4β1, was identified among the strongest predictors of overall survival (OS) in chronic lymphocytic leukemia (CLL), along with IGHV mutational status and deletion of the 17p chromosome involving TP53. In addition to TP53, the clinical relevance of NOTCH1, SF3B1 and BIRC3 gene mutations has been recently emphasized. By analyzing a cohort of 778 unselected CLL patients, we assessed the clinical relevance of CD49d as an OS predictor in subgroups defined by mutation/deletion of the TP53, NOTCH1, SF3B1 and BIRC3 genes. In this context, CD49d emerged as an independent predictor of OS in multivariate Cox analysis (Hazard ratio =1.88, P<0.0001). Consistently, high CD49d expression identified CLL subsets with inferior OS in the context of each category of a previously reported hierarchical risk stratification model. Moreover, by evaluating the relative importance of biological prognosticators by random survival forests, CD49d was selected among the top-ranked OS predictor (variable importance =0.0410), along with IGHV mutational status and TP53 abnormalities. These results confirmed CD49d as an independent negative OS prognosticator in CLL also in comprehensive models comprising the novel recurrent mutations. In this context, TP53 disruption and NOTCH1 mutations retained prognostic relevance, in keeping with their roles in CLL cell immuno-chemoresistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 2008; 111: 5446–5456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Burger JA . Targeting the microenvironment in chronic lymphocytic leukemia is changing the therapeutic landscape. Curr Opin Oncol 2012; 24: 643–649.

    Article  CAS  PubMed  Google Scholar 

  3. Dal BoM, Tissino E, Benedetti D, Caldana C, Bomben R, Del PG et al. Microenvironmental interactions in chronic lymphocytic leukemia: the master role of CD49d. Semin Hematol 2014; 51: 168–176.

    Article  Google Scholar 

  4. Zucchetto A, Benedetti D, Tripodo C, Bomben R, Dal BM, Marconi D et al. CD38/CD31, the CCL3 and CCL4 chemokines, and CD49d/vascular cell adhesion molecule-1 are interchained by sequential events sustaining chronic lymphocytic leukemia cell survival. Cancer Res 2009; 69: 4001–4009.

    Article  CAS  PubMed  Google Scholar 

  5. Zucchetto A, Vaisitti T, Benedetti D, Tissino E, Bertagnolo V, Rossi D et al. The CD49d/CD29 complex is physically and functionally associated with CD38 in B-cell chronic lymphocytic leukemia cells. Leukemia 2012; 26: 1301–1312.

    Article  CAS  PubMed  Google Scholar 

  6. Zucchetto A, Caldana C, Benedetti D, Tissino E, Rossi FM, Hutterer E et al. CD49d is overexpressed by trisomy 12 chronic lymphocytic leukemia cells: evidence for a methylation-dependent regulation mechanism. Blood 2013; 122: 3317–3321.

    Article  CAS  PubMed  Google Scholar 

  7. Baumann T, Delgado J, Santacruz R, Martinez-Trillos A, Rozman M, Aymerich M et al. CD49d (ITGA4) expression is a predictor of time to first treatment in patients with chronic lymphocytic leukaemia and mutated IGHV status. Br J Haematol 2015; 172: 48–55.

    Article  PubMed  Google Scholar 

  8. Bulian P, Shanafelt TD, Fegan C, Zucchetto A, Cro L, Nuckel H et al. CD49d is the strongest flow cytometry-based predictor of overall survival in chronic lymphocytic leukemia. J Clin Oncol 2014; 32: 897–904.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gattei V, Bulian P, Del Principe MI, Zucchetto A, Maurillo L, Buccisano F et al. Relevance of CD49d protein expression as overall survival and progressive disease prognosticator in chronic lymphocytic leukemia. Blood 2008; 111: 865–873.

    Article  CAS  PubMed  Google Scholar 

  10. Shanafelt TD, Geyer SM, Bone ND, Tschumper RC, Witzig TE, Nowakowski GS et al. CD49d expression is an independent predictor of overall survival in patients with chronic lymphocytic leukaemia: a prognostic parameter with therapeutic potential. Br J Haematol 2008; 140: 537–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baliakas P, Hadzidimitriou A, Sutton LA, Rossi D, Minga E, Villamor N et al. Recurrent mutations refine prognosis in chronic lymphocytic leukemia. Leukemia 2015; 29: 329–336.

    Article  CAS  PubMed  Google Scholar 

  12. Fabbri G, Rasi S, Rossi D, Trifonov V, Khiabanian H, Ma J et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J Exp Med 2011; 208: 1389–1401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jeromin S, Weissmann S, Haferlach C, Dicker F, Bayer K, Grossmann V et al. SF3B1 mutations correlated to cytogenetics and mutations in NOTCH1, FBXW7, MYD88, XPO1 and TP53 in 1160 untreated CLL patients. Leukemia 2014; 28: 108–117.

    Article  CAS  PubMed  Google Scholar 

  14. Puente XS, Pinyol M, Quesada V, Conde L, Ordonez GR, Villamor N et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011; 475: 101–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Puente XS, Bea S, Valdes-Mas R, Villamor N, Gutierrez-Abril J, Martin-Subero JI et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 2015; 526: 519–524.

    Article  CAS  PubMed  Google Scholar 

  16. Rossi D, Rasi S, Spina V, Bruscaggin A, Monti S, Ciardullo C et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood 2013; 121: 1403–1412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rossi D, Bruscaggin A, Spina V, Rasi S, Khiabanian H, Messina M et al. Mutations of the SF3B1 splicing factor in chronic lymphocytic leukemia: association with progression and fludarabine-refractoriness. Blood 2011; 118: 6904–6908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rossi D, Fangazio M, Rasi S, Vaisitti T, Monti S, Cresta S et al. Disruption of BIRC3 associates with fludarabine chemorefractoriness in TP53 wild-type chronic lymphocytic leukemia. Blood 2012; 119: 2854–2862.

    Article  CAS  PubMed  Google Scholar 

  19. Rossi D, Khiabanian H, Spina V, Ciardullo C, Bruscaggin A, Fama R et al. Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia. Blood 2014; 123: 2139–2147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Quesada V, Conde L, Villamor N, Ordonez GR, Jares P, Bassaganyas L et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat Genet 2012; 44: 47–52.

    Article  CAS  Google Scholar 

  21. Wang L, Lawrence MS, Wan Y, Stojanov P, Sougnez C, Stevenson K et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N Engl J Med 2011; 365: 2497–2506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nadeu F, Delgado J, Royo C, Baumann T, Stankovic T, Pinyol M et al. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1 and ATM mutations in chronic lymphocytic leukemia. Blood 2016; 127: 2122–2130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sportoletti P, Baldoni S, Cavalli L, Del PB, Bonifacio E, Ciurnelli R et al. NOTCH1 PEST domain mutation is an adverse prognostic factor in B-CLL. Br J Haematol 2010; 151: 404–406.

    Article  PubMed  Google Scholar 

  24. Sportoletti P, Baldoni S, Del PB, Aureli P, Dorillo E, Ruggeri L et al. A revised NOTCH1 mutation frequency still impacts survival while the allele burden predicts early progression in chronic lymphocytic leukemia. Leukemia 2014; 28: 436–439.

    Article  CAS  PubMed  Google Scholar 

  25. Rasi S, Khiabanian H, Ciardullo C, Terzi-di-Bergamo L, Monti S, Spina V et al. Clinical impact of small subclones harboring NOTCH1, SF3B1 or BIRC3 mutations in chronic lymphocytic leukemia. Haematologica 2016; 101: e135–e138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guieze R, Robbe P, Clifford R, de GS, Pereira B, Timbs et al. Presence of multiple recurrent mutations confers poor trial outcome of relapsed/refractory CLL. Blood 2015; 126: 2110–2117.

    Article  CAS  PubMed  Google Scholar 

  27. Baliakas P, Mattsson M, Stamatopoulos K, Rosenquist R . Prognostic indices in chronic lymphocytic leukaemia: where do we stand how do we proceed? J Intern Med 2015; 279: 347–357.

    Article  PubMed  Google Scholar 

  28. Kutsch N, Bahlo J, Byrd J, Dohner H, Eichhorst B, Else M et al. The International Prognostic Index for patients with CLL (CLL-IPI): an international meta-analysis. J Clin Oncol 2015; 33 (Suppl): abstract 7002.

    Google Scholar 

  29. Pflug N, Bahlo J, Shanafelt TD, Eichhorst BF, Bergmann MA, Elter T et al. Development of a comprehensive prognostic index for patients with chronic lymphocytic leukemia. Blood 2014; 124: 49–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1910–1916.

    Article  CAS  PubMed  Google Scholar 

  31. Matutes E, Owusu-Ankomah K, Morilla R, Garcia MJ, Houlihan A, Que TH et al. The immunological profile of B-cell disorders and proposal of a scoring system for the diagnosis of CLL. Leukemia 1994; 8: 1640–1645.

    CAS  PubMed  Google Scholar 

  32. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999; 94: 1840–1847.

    CAS  PubMed  Google Scholar 

  33. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK . Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999; 94: 1848–1854.

    CAS  PubMed  Google Scholar 

  34. Rossi D, Spina V, Bomben R, Rasi S, Dal-Bo M, Bruscaggin et al. Association between molecular lesions and specific B-cell receptor subsets in chronic lymphocytic leukemia. Blood 2013; 121: 4902–4905.

    Article  CAS  PubMed  Google Scholar 

  35. Pozzo F, Bittolo T, Arruga F, Bulian P, Macor P, Tissino E et al. NOTCH1 mutations associate with low CD20 level in chronic lymphocytic leukemia: evidence for a NOTCH1 mutation-driven epigenetic dysregulation. Leukemia 2015; 30: 182–189.

    Article  PubMed  Google Scholar 

  36. Cheson BD, Pfistner B, Juweid ME, Gascoyne RD, Specht L, Horning SJ et al. Revised response criteria for malignant lymphoma. J Clin Oncol 2007; 25: 579–586.

    Article  PubMed  Google Scholar 

  37. Fischer K, Bahlo J, Fink AM, Goede V, Herling CD, Cramer P et al. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood 2016; 127: 208–215.

    Article  CAS  PubMed  Google Scholar 

  38. Ishwaran H, Kogalur UB . Consistency of random survival forests. Stat Probab Lett 2010; 80: 1056–1064.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ishwaran H, Gerds TA, Kogalur UB, Moore RD, Gange SJ, Lau BM . Random survival forests for competing risks. Biostatistics 2014; 15: 757–773.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Harrel FE (eds). Regression modeling strategies: with applications to linear models Logistic Regression, and Survival Analysis. Springer: New York, NY, 2001.

  41. Harrell Jr FE, Califf RM, Pryor DB, Lee KL, Rosati RA . Evaluating the yield of medical tests. JAMA 1982; 247: 2543–2546.

    Article  PubMed  Google Scholar 

  42. Heagerty PJ, Zheng Y . Survival model predictive accuracy and ROC curves. Biometrics 2005; 61: 92–105.

    Article  PubMed  Google Scholar 

  43. Rai KR, Sawitsky A, Cronkite EP, Chanana AD, Levy RN, Pasternack BS . Clinical staging of chronic lymphocytic leukemia. Blood 1975; 46: 219–234.

    CAS  PubMed  Google Scholar 

  44. Del Giudice I, Rossi D, Chiaretti S, Marinelli M, Tavolaro S, Gabrielli S et al. NOTCH1 mutations in +12 chronic lymphocytic leukemia (CLL) confer an unfavorable prognosis, induce a distinctive transcriptional profiling and refine the intermediate prognosis of +12 CLL. Haematologica 2012; 97: 437–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rossi D, Rasi S, Fabbri G, Spina V, Fangazio M, Forconi F et al. Mutations of NOTCH1 are an independent predictor of survival in chronic lymphocytic leukemia. Blood 2012; 119: 521–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zenz T, Eichhorst B, Busch R, Denzel T, Habe S, Winkler D et al. TP53 mutation and survival in chronic lymphocytic leukemia. J Clin Oncol 2010; 28: 4473–4479.

    Article  PubMed  Google Scholar 

  47. Zenz T, Vollmer D, Trbusek M, Smardova J, Benner A, Soussi T et al. TP53 mutation profile in chronic lymphocytic leukemia: evidence for a disease specific profile from a comprehensive analysis of 268 mutations. Leukemia 2010; 24: 2072–2079.

    Article  CAS  PubMed  Google Scholar 

  48. Parikh SA, Rabe KG, Kay NE, Call TG, Ding W, Schwager SM et al. Chronic lymphocytic leukemia in young (55 years) patients: a comprehensive analysis of prognostic factors and outcomes. Haematologica 2014; 99: 140–147.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Liso V, Capalbo S, Lapietra A, Pavone V, Guarini A, Specchia G . Evaluation of trisomy 12 by fluorescence in situ hybridization in peripheral blood, bone marrow and lymph nodes of patients with B-cell chronic lymphocytic leukemia. Haematologica 1999; 84: 212–217.

    CAS  PubMed  Google Scholar 

  50. Riches JC, O'Donovan CJ, Kingdon SJ, McClanahan F, Clear AJ, Neuberg DS et al. Trisomy 12 chronic lymphocytic leukemia cells exhibit upregulation of integrin signaling that is modulated by NOTCH1 mutations. Blood 2014; 123: 4101–4110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Advani RH, Buggy JJ, Sharman JP, Smith SM, Boyd TE, Grant B et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol 2013; 31: 88–94.

    Article  CAS  PubMed  Google Scholar 

  52. O'Brien S, Furman RR, Coutre SE, Sharman JP, Burger JA, Blum KA et al. Ibrutinib as initial therapy for elderly patients with chronic lymphocytic leukaemia or small lymphocytic lymphoma: an open-label, multicentre, phase 1b/2 trial. Lancet Oncol 2014; 15: 48–58.

    Article  CAS  PubMed  Google Scholar 

  53. de Rooij MF, Kuil A, Geest CR, Eldering E, Chang BY, Buggy JJ et al. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood 2012; 119: 2590–2594.

    Article  CAS  PubMed  Google Scholar 

  54. Ponader S, Chen SS, Buggy JJ, Balakrishnan K, Gandhi V, Wierda WG et al. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo. Blood 2012; 119: 1182–1189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Spaargaren M, Beuling EA, Rurup ML, Meijer HP, Klok MD, Middendorp S et al. The B cell antigen receptor controls integrin activity through Btk and PLCgamm. J Exp Med 2003; 198: 1539–1550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hallek M . Chronic lymphocytic leukemia: 2013 update on diagnosis, risk stratification and treatment. Am J Hematol 2013; 88: 803–816.

    Article  CAS  PubMed  Google Scholar 

  57. Stilgenbauer S, Schnaiter A, Paschka P, Zenz T, Rossi M, Dohner K et al. Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood 2014; 123: 3247–3254.

    Article  CAS  PubMed  Google Scholar 

  58. Bo MD, Del Principe MI, Pozzo F, Ragusa D, Bulian P, Rossi D et al. NOTCH1 mutations identify a chronic lymphocytic leukemia patient subset with worse prognosis in the setting of a rituximab-based induction and consolidation treatment. Ann Hematol 2014; 93: 1765–1774.

    Article  CAS  PubMed  Google Scholar 

  59. Rossi D, Terzi-di-Bergamo L, De Paoli L, Cerri M, Ghilardi G, Chiarenza et al. Molecular prediction of durable remission after first-line fludarabine-cyclophosphamide-rituximab in chronic lymphocytic leukemia. Blood 2015; 126: 1921–1924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thompson PA, Tam CS, O'Brien SM, Wierda WG, Stingo F, Plunkett W et al. Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia. Blood 2016; 127: 303–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Skarzynski M, Niemann CU, Lee YS, Martyr S, Maric I, Salem D et al. Interactions between ibrutinib and anti-CD20 antibodies: competing effects on the outcome of combination therapy. Clin Cancer Res 2016; 22: 86–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported in part by the Associazione Italiana Ricerca Cancro (AIRC), Investigator Grants IG-13227 and IG-17622, and Special Program Molecular Clinical Oncology 5 × 1000 No. 10007; Progetto Ricerca Finalizzata I.R.C.C.S. no. RF-2010-2307262, RF-2011-02349712, Progetto Giovani Ricercatori no. GR-2010-2317594, no. GR-2011-02347441, no. GR-2011-02346826, no. GR-2011-02351370, Ministero della Salute, Rome, Italy; Associazione Italiana contro le Leucemie, linfomi e mielomi (AIL), Venezia Section, Pramaggiore Group, Italy; Fondazione per la Vita di Pordenone, Italy; Ricerca Scientifica Applicata, Regione Friuli Venezia Giulia ('Linfonet' Project), Trieste, Italy; '5x1000 Intramural Program', Centro di Riferimento Oncologico, Aviano, Italy.

Author contributions

MDB analyzed the data and wrote the manuscript, PB analyzed the data and contributed to writing the manuscript, RB contributed to analyzing the data and performed molecular studies, FP, TB, EZ, IC and MD performed molecular studies, FMR performed FISH analysis, AZ, ET, DB, PN and HC performed cytofluorimetric studies, FZ, GP, AC, FDR and GDP provided well-characterized biological samples and clinical data, DR and GG provided well-characterized biological samples, clinical data and contributed to writing the manuscript and VG designed the study, contributed to analyzing the data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M Dal Bo or V Gattei.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dal Bo, M., Bulian, P., Bomben, R. et al. CD49d prevails over the novel recurrent mutations as independent prognosticator of overall survival in chronic lymphocytic leukemia. Leukemia 30, 2011–2018 (2016). https://doi.org/10.1038/leu.2016.88

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.88

This article is cited by

Search

Quick links