Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute lymphoblastic leukemia

CDKN2A-independent role of BMI1 in promoting growth and survival of Ph+ acute lymphoblastic leukemia

Abstract

BMI1 is a key component of the PRC1 (polycomb repressive complex-1) complex required for maintenance of normal and cancer stem cells. Its aberrant expression is detected in chronic myeloid leukemia and Ph+ acute lymphoblastic leukemia (ALL), but no data exist on BMI1 requirement in ALL cells. We show here that BMI1 expression is important for proliferation and survival of Ph+ ALL cells and for leukemogenesis of Ph+ cells in vivo. Levels of BIM, interferon-α (IFNα)-regulated genes and E2F7 were upregulated in BMI1-silenced cells, suggesting that repressing their expression is important for BMI1 biological effects. Consistent with this hypothesis, we found that: (i) downregulation of BIM or E2F7 abrogated apoptosis or rescued, in part, the reduced proliferation and colony formation of BMI1 silenced BV173 cells; (ii) BIM/E2F7 double silencing further enhanced colony formation and in vivo leukemogenesis of BMI1-silenced cells; (iii) overexpression of BIM and E2F7 mimicked the effect of BMI1 silencing in BV173 and SUP-B15 cells; and (iv) treatment with IFNα suppressed proliferation and colony formation of Ph+ ALL cells. These studies indicate that the growth-promoting effects of BMI1 in Ph+ ALL cells depend on suppression of multiple pathways and support the use of IFNα in the therapy of Ph+ ALL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Melo JV . The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood 1996; 88: 2375–2384.

    CAS  Google Scholar 

  2. Goga A, McLaughlin J, Afar DE, Saffran DC, Witte ON . Alternative signals to RAS for hematopoietic transformation by the BCR-ABL oncogene. Cell 1995; 82: 981–988.

    Article  CAS  Google Scholar 

  3. Nieborowska-Skorska M, Wasik MA, Slupianek A, Salomoni P, Kitamura T, Calabretta B et al. Signal transducer and activator of transcription (STAT)5 activation by BCR/ABLis dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis. J Exp Med 1999; 189: 1229–1242.

    Article  CAS  Google Scholar 

  4. Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, Choi JK et al. Transformation of hematopoietic cells by BCR-ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J 1997; 16: 6151–6161.

    Article  CAS  Google Scholar 

  5. Perrotti D, Calabretta B . The biology of CML blast crisis. Blood 2004; 103: 4010–4022.

    Article  Google Scholar 

  6. Perrotti D, Jamieson C, Goldman J, Skorski T . Chronic myeloid leukemia: mechanisms of blastic transformation. J Clin Invest 2010; 120: 2254–2264.

    Article  CAS  Google Scholar 

  7. Lugo TG, Pendergast AM, Muller AJ, Witte ON . Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science 1990; 247: 1079–1082.

    Article  CAS  Google Scholar 

  8. Kantarjian H, Talpaz M, Dhingre K, Estey E, Keating MJ, Ku S et al. Significance of P210 versus P190 molecular abnormalities in adults with Philadelphia chromosome positive acute leukemia. Blood 1991; 78: 2411–2418.

    CAS  PubMed  Google Scholar 

  9. Cimino G, Pane F, Elia L, Finocezzi E, Fazi P, Annino L et al. The role of BCR/ABL isoforms in the presentation and outcome of patients with Philadelphia-positive acute lymphoblastic leukemia: a seven year update of the GIMENA 0496 trial. Haematologica 2006; 91: 377–380.

    CAS  PubMed  Google Scholar 

  10. Williams RT, Sherr CJ . The INK4-ARF (CDKN2A/B) locus in hematopoiesis and BCR-ABL-induced leukemias. Cold Spring Harb Symp Quant Biol 2008; 73: 461–467.

    Article  CAS  Google Scholar 

  11. Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J et al. BCR-ABL1 lymphoblastic leukemia is characterized by the deletion of Ikaros. Nature 2008; 453: 110–114.

    Article  CAS  Google Scholar 

  12. Klemm L, Duy C, Iacobucci I, Kuchen S, von Levetzow G, Feldhahn N et al. The B cell mutator AID promotes B lymphoid blast crisis and drug resistance in chronic myeloid leukemia. Cancer Cell 2009; 16: 232–245.

    Article  CAS  Google Scholar 

  13. Gruber TA, Chang MS, Sposto R, Müshen M . Activation-induced cytidine deaminase accelerates clonal evolution in BCR-ABL1-driven B cell lineage acute lymphoblastic leukemia. Cancer Res 2010; 70: 7411–7420.

    Article  CAS  Google Scholar 

  14. van Lohuizen M, Frasch M, Wientjens E, Berns A . Sequence similarity between the mammalian bmi-1 proto-oncogene and the Drosophila regulatory genes Psc and Su(z)2. Nature 1991; 353: 353–355.

    Article  CAS  Google Scholar 

  15. Waldron T, De Dominici M, Soliera AR, Audia A, Iacobucci I, Lonetti A et al. c-Myb and its target Bmi1 are required for p190BCR/ABL leukemogenesis in mouse and human cells. Leukemia 2012; 26: 644–653.

    Article  CAS  Google Scholar 

  16. Cao R, Tsukada Y, Zhang Y . Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell 2005; 20: 845–854.

    Article  CAS  Google Scholar 

  17. Lessard J, Sauvageau G . Bmi-1 determines the proliferative capacity of normal and leukaemic hematopoietic stem cells. Nature 2003; 423: 255–260.

    Article  CAS  Google Scholar 

  18. Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL et al. Bmi-1 is required for maintenance of adult self-renewing hematopoietic stem cells. Nature 2003; 423: 302–305.

    Article  CAS  Google Scholar 

  19. Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ . Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 2003; 425: 962–967.

    Article  CAS  Google Scholar 

  20. Sparmann A, van Lohuizen M . Polycomb silencers control cell fate,development and cancer. Nat Rev Cancer 2006; 6: 846–856.

    Article  CAS  Google Scholar 

  21. Sauvageau M, Sauvageau G . Polycomb group proteins: multi-facet regulators of somatic stem cells and cancer. Cell Stem Cell 2010; 7: 299–313.

    Article  CAS  Google Scholar 

  22. Jiang L, Li J, Song L . Bmi-1, stem cells and cancer. Acta Biochim Biophys Sin (Shanghai) 2009; 41: 527–534.

    Article  CAS  Google Scholar 

  23. Cao L, Bombard J, Cintron K, Sheedy J, Weatall ML, Davis TW . BMI1 as a novel target for drug discovery in cancer. J Cell Biochem 2011; 112: 2729–2741.

    Article  CAS  Google Scholar 

  24. Glinsky GV . Death-from-cancer signatures and stem cell contribution to metastatic cancer. Cell Cycle 2005; 4: 1171–1175.

    Article  CAS  Google Scholar 

  25. Glinsky GV, Berezovska O, Glinskii AB . Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 2005; 115: 1503–1521.

    Article  CAS  Google Scholar 

  26. Mohty M, Yong AS, Szydlo RM, Apperley JF, Melo JV . The polycomb group BMI1 gene is a molecular marker for predicting prognosis of chronic myeloid leukemia. Blood 2007; 110: 380–383.

    Article  CAS  Google Scholar 

  27. Bhattacharyya J, Mihara K, Yasunaga S, Tanaka H, Hoshi M, Takihara Y et al. BMI-1 expression is enhanced through transcriptional and posttranscriptional regulation during the progression of chronic myeloid leukemia. Ann Hematol 2009; 88: 333–340.

    Article  CAS  Google Scholar 

  28. Rizo A, Horton SJ, Olthef S, Dontje B, Aurema A, van Os R et al. BMI1 collaborates with BCR-ABL in leukemic transformation of human CD34+ cells. Blood 2010; 116: 4621–4630.

    Article  CAS  Google Scholar 

  29. Sengupta A, Ficker AM, Dunn SK, Madhu M, Cancelas JA . Bmi-1 reprograms CML B-lymphoid progenitors to become B-ALL-initiating cells. Blood 2012; 119: 494–502.

    Article  CAS  Google Scholar 

  30. Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M . The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 1999; 397: 164–168.

    Article  CAS  Google Scholar 

  31. Jacobs JJ, Scheijen B, Vonchen JW, Kieboom K, Berns A, van Lohuizen M . Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev 1999; 13: 2678–2690.

    Article  CAS  Google Scholar 

  32. Douglas D, Hsu JH, Hung L, Cooper A, Abdueva D, van Doorninck J et al. BMI-1 promotes Ewing sarcoma tumorigenicity independent of CDKN2A repression. Cancer Res 2008; 68: 6507–6511.

    Article  CAS  Google Scholar 

  33. Bruggeman SW, Hulsman T, Tanger E, Buckle T, Blom M, Zevenhoven J et al. Bmi1 controls tumor development in an Ink4a/arf-independent manner in a mouse model for glioma. Cancer Cell 2007; 12: 328–341.

    Article  CAS  Google Scholar 

  34. Jagani Z, Wiederschain D, Loo A, He D, Mosher R, Fordjour P et al. The Polycomb group protein Bmi-1 is essential for the growth of multiple myeloma cells. Cancer Res 2010; 70: 5528–5538.

    Article  CAS  Google Scholar 

  35. Feldhahn N, Henke N, Melchior K, Duy C, Soh BN, Klein F et al. Activation-induced cytidine deaminase acts as a mutator in BCR-ABL1-transformed acute lymphoblastic leukemia cells. J Exp Med 2007; 204: 1157–1166.

    Article  CAS  Google Scholar 

  36. Westendorp B, Mokry M, Groot Koerkamp MJ, Holstege FC, Cuppen E, de Bruin A . E2F7 represses a network of oscillating cell cycle genes to control S-phase progression. Nucleic Acids Res 2012; 40: 3511–3523.

    Article  CAS  Google Scholar 

  37. Liu B, Shats I, Angus SP, Gatza ML, Nevins JR . Interaction of E2F7 transcription factor with E2F1 and C-terminal binding protein (CtBP) provides a mechanism for E2F7-dependent transcription repression. J Biol Chem 2013; 288: 24581–24589.

    Article  CAS  Google Scholar 

  38. Kreso A, van Galen P, Pedley NM, Lima-Fernandes E, Frelin C, Davis T et al. Self-renewal as a therapeutic target in human colorectal cancer. Nat Med 2014; 20: 29–38.

    Article  CAS  Google Scholar 

  39. Ottmann OG, Pfeifer H . First-line treatment of Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) in adults. Curr Opin Oncol 2009; Suppl 1: S43–S46.

    Article  Google Scholar 

  40. Branford S, Rudzki Z, Walsh S, Grigg A, Arthur C, Taylor K et al. High frequency of point mutations clustered within the adenosine triphosphate-binding region of BCR/ABL in patients with chronic myeloid leukemia or Ph-positive acute lymphoblastic leukemia (Ph+ ALL) who develop imatinib (STI571) resistance. Blood 2002; 99: 3472–3475.

    Article  CAS  Google Scholar 

  41. Pfeifer H, Wassmann B, Pavlova A, Wunderle L, Oldenburg J, Binckebanck A et al. Kinase domain mutations of BCR-ABL frequently precede imatinib-based therapy and give rise to relapse in patients with de novo Philadelphia-positive acute lymphoblastic leukemia (Ph+ ALL). Blood 2007; 110: 727–734.

    Article  CAS  Google Scholar 

  42. Visani G, Isidori A, Malagola M, Alberti D, Capdeville R, Martinelli G et al. Efficacy of imatinib mesylate (STI571) in conjunction with alpha-interferon: long-term quantitative molecular remission in relapsed P-190BCR-ABL-positive acute lymphoblastic leukemia. Leukemia 2002; 16: 2159–2161.

    Article  CAS  Google Scholar 

  43. Wassmann B, Scheuring U, Pfeifer H, Binckebanck A, Kabish A, Lübbert M et al. Efficacy and safety of imatinib mesylate (Glivec) in combination with interferon-alpha (IFN-alpha) in Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL). Leukemia 2003; 17: 1919–1924.

    Article  CAS  Google Scholar 

  44. Piccaluga PP, Martinelli G, Isidori A, Malagola M, Rondoni M, Paolini S et al. long-term molecular complete remission with IFN-α in Ph+ adult acute lymphoid leukemia patients. Leukemia 2008; 22: 1617–1618.

    Article  CAS  Google Scholar 

  45. Mourgues L, Imbert V, Nebout M, Colosetti P, Neffati Z, Lagadec P et al. The BMI1 polycomb protein represses cyclin G2-induced autophagy to support proliferation in chronic myeloid leukemia cells. Leukemia 2015; 29: 1993–2002.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by the NCI grant RO1 CA167169 (to BC) and by the SKCC support grant P30 CA056036. Dr Samanta A Mariani was supported, in part, by an AIRC-Marie Curie international fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Calabretta.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariani, S., Minieri, V., De Dominici, M. et al. CDKN2A-independent role of BMI1 in promoting growth and survival of Ph+ acute lymphoblastic leukemia. Leukemia 30, 1682–1690 (2016). https://doi.org/10.1038/leu.2016.70

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.70

This article is cited by

Search

Quick links