Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptional control and signal transduction, cell cycle

Aberrant activation of the GIMAP enhancer by oncogenic transcription factors in T-cell acute lymphoblastic leukemia

Abstract

The transcription factor TAL1/SCL is one of the most prevalent oncogenes in T-cell acute lymphoblastic leukemia (T-ALL), a malignant disorder resulting from leukemic transformation of thymus T-cell precursors. TAL1 is normally expressed in hematopoietic stem cells (HSCs) but is silenced in immature thymocytes. We hypothesize that TAL1 contributes to leukemogenesis by activating genes that are normally repressed in immature thymocytes. Herein, we identified a novel TAL1-regulated super-enhancer controlling the GIMAP locus, which resides within an insulated chromosomal locus in T-ALL cells. The GIMAP genes are expressed in HSCs and mature T cells but are downregulated during the immature stage of thymocyte differentiation. The GIMAP enhancer is activated by TAL1, RUNX1 and GATA3 in human T-ALL cells but is repressed by E-proteins. Overexpression of human GIMAP genes in immature thymocytes alone does not induce tumorigenesis but accelerates leukemia development in zebrafish. Our results demonstrate that aberrant activation of the GIMAP enhancer contributes to T-cell leukemogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Aifantis I, Raetz E, Buonamici S . Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol 2008; 8: 380–390.

    Article  CAS  Google Scholar 

  2. Armstrong SA, Look AT . Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol 2005; 23: 6306–6315.

    Article  CAS  Google Scholar 

  3. Look AT . Oncogenic transcription factors in the human acute leukemias. Science 1997; 278: 1059–1064.

    Article  CAS  Google Scholar 

  4. Lecuyer E, Hoang T . SCL: from the origin of hematopoiesis to stem cells and leukemia. Exp Hematol 2004; 32: 11–24.

    Article  CAS  Google Scholar 

  5. Hsu HL, Cheng JT, Chen Q, Baer R . Enhancer-binding activity of the tal-1 oncoprotein in association with the E47/E12 helix-loop-helix proteins. Mol Cell Biol 1991; 11: 3037–3042.

    Article  CAS  Google Scholar 

  6. Hsu HL, Wadman I, Baer R . Formation of in vivo complexes between the TAL1 and E2A polypeptides of leukemic T cells. Proc Natl Acad Sci USA 1994; 91: 3181–3185.

    Article  CAS  Google Scholar 

  7. Lecuyer E, Herblot S, Saint-Denis M, Martin R, Begley CG, Porcher C et al. The SCL complex regulates c-kit expression in hematopoietic cells through functional interaction with Sp1. Blood 2002; 100: 2430–2440.

    Article  CAS  Google Scholar 

  8. Wadman IA, Osada H, Grutz GG, Agulnick AD, Westphal H, Forster A et al. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J 1997; 16: 3145–3157.

    Article  CAS  Google Scholar 

  9. Xu Z, Huang S, Chang LS, Agulnick AD, Brandt SJ . Identification of a TAL1 target gene reveals a positive role for the LIM domain-binding protein Ldb1 in erythroid gene expression and differentiation. Mol Cell Biol 2003; 23: 7585–7599.

    Article  CAS  Google Scholar 

  10. Landry JR, Kinston S, Knezevic K, de Bruijn MF, Wilson N, Nottingham WT et al. Runx genes are direct targets of Scl/Tal1 in the yolk sac and fetal liver. Blood 2008; 111: 3005–3014.

    Article  CAS  Google Scholar 

  11. Nottingham WT, Jarratt A, Burgess M, Speck CL, Cheng JF, Prabhakar S et al. Runx1-mediated hematopoietic stem-cell emergence is controlled by a Gata/Ets/SCL-regulated enhancer. Blood 2007; 110: 4188–4197.

    Article  CAS  Google Scholar 

  12. Herblot S, Steff AM, Hugo P, Aplan PD, Hoang T . SCL and LMO1 alter thymocyte differentiation: inhibition of E2A-HEB function and pre-T alpha chain expression. Nat Immunol 2000; 1: 138–144.

    Article  CAS  Google Scholar 

  13. Bernard M, Delabesse E, Smit L, Millien C, Kirsch IR, Strominger JL et al. Helix-loop-helix (E2-5, HEB, TAL1 and Id1) protein interaction with the TCRalphadelta enhancers. Int Immunol 1998; 10: 1539–1549.

    Article  CAS  Google Scholar 

  14. Kee BL . E and ID proteins branch out. Nat Rev Immunol 2009; 9: 175–184.

    Article  CAS  Google Scholar 

  15. Begley CG, Aplan PD, Davey MP, Nakahara K, Tchorz K, Kurtzberg J et al. Chromosomal translocation in a human leukemic stem-cell line disrupts the T-cell antigen receptor delta-chain diversity region and results in a previously unreported fusion transcript. Proc Natl Acad Sci USA 1989; 86: 2031–2035.

    Article  CAS  Google Scholar 

  16. Brown L, Cheng JT, Chen Q, Siciliano MJ, Crist W, Buchanan G et al. Site-specific recombination of the tal-1 gene is a common occurrence in human T cell leukemia. EMBO J 1990; 9: 3343–3351.

    Article  CAS  Google Scholar 

  17. Ferrando AA, Look AT . Clinical implications of recurring chromosomal and associated molecular abnormalities in acute lymphoblastic leukemia. Semin Hematol 2000; 37: 381–395.

    Article  CAS  Google Scholar 

  18. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1: 75–87.

    Article  CAS  Google Scholar 

  19. Mansour MR, Abraham BJ, Anders L, Berezovskaya A, Gutierrez A, Durbin AD et al. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science 2014; 346: 1373–1377.

    Article  CAS  Google Scholar 

  20. Tremblay M, Tremblay CS, Herblot S, Aplan PD, Hebert J, Perreault C et al. Modeling T-cell acute lymphoblastic leukemia induced by the SCL and LMO1 oncogenes. Genes Dev 2010; 24: 1093–1105.

    Article  CAS  Google Scholar 

  21. O'Neil J, Shank J, Cusson N, Murre C, Kelliher M . TAL1/SCL induces leukemia by inhibiting the transcriptional activity of E47/HEB. Cancer Cell 2004; 5: 587–596.

    Article  CAS  Google Scholar 

  22. Sanda T, Lawton LN, Barrasa MI, Fan ZP, Kohlhammer H, Gutierrez A et al. Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer Cell 2012; 22: 209–221.

    Article  CAS  Google Scholar 

  23. Kwiatkowski N, Zhang T, Rahl PB, Abraham BJ, Reddy J, Ficarro SB et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature 2014; 511: 616–620.

    Article  CAS  Google Scholar 

  24. Pott S, Lieb JD . What are super-enhancers? Nat Genet 2015; 47: 8–12.

    Article  CAS  Google Scholar 

  25. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA et al. Super-enhancers in the control of cell identity and disease. Cell 2013; 155: 934–947.

    Article  CAS  Google Scholar 

  26. Loven J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 2013; 153: 320–334.

    Article  CAS  Google Scholar 

  27. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 2013; 153: 307–319.

    Article  CAS  Google Scholar 

  28. Nitta T, Nasreen M, Seike T, Goji A, Ohigashi I, Miyazaki T et al. IAN family critically regulates survival and development of T lymphocytes. PLoS Biol 2006; 4: e103.

    Article  Google Scholar 

  29. Cambot M, Aresta S, Kahn-Perles B, de Gunzburg J, Romeo PH . Human immune associated nucleotide 1: a member of a new guanosine triphosphatase family expressed in resting T and B cells. Blood 2002; 99: 3293–3301.

    Article  CAS  Google Scholar 

  30. Chadwick N, Zeef L, Portillo V, Boros J, Hoyle S, van Doesburg JC et al. Notch protection against apoptosis in T-ALL cells mediated by GIMAP5. Blood Cells Mol Dis 2010; 45: 201–209.

    Article  CAS  Google Scholar 

  31. Chadwick N, Zeef L, Portillo V, Fennessy C, Warrander F, Hoyle S et al. Identification of novel Notch target genes in T cell leukaemia. Mol Cancer 2009; 8: 35.

    Article  Google Scholar 

  32. Krucken J, Epe M, Benten WP, Falkenroth N, Wunderlich F . Malaria-suppressible expression of the anti-apoptotic triple GTPase mGIMAP8. J Cell Biochem 2005; 96: 339–348.

    Article  Google Scholar 

  33. Wang H, Zou J, Zhao B, Johannsen E, Ashworth T, Wong H et al. Genome-wide analysis reveals conserved and divergent features of Notch1/RBPJ binding in human and murine T-lymphoblastic leukemia cells. Proc Natl Acad Sci USA 2011; 108: 14908–14913.

    Article  CAS  Google Scholar 

  34. Hnisz D, Weintraub AS, Day DS, Valton AL, Bak RO, Li CH et al. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 2016; 351: 1454–1458.

    Article  CAS  Google Scholar 

  35. Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol 2010; 28: 1045–1048.

    Article  CAS  Google Scholar 

  36. Lin M, Wei LJ, Sellers WR, Lieberfarb M, Wong WH, Li C . dChipSNP: significance curve and clustering of SNP-array-based loss-of-heterozygosity data. Bioinformatics 2004; 20: 1233–1240.

    Article  CAS  Google Scholar 

  37. Dowen JM, Fan ZP, Hnisz D, Ren G, Abraham BJ, Zhang LN et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 2014; 159: 374–387.

    Article  CAS  Google Scholar 

  38. Zhou X, Lowdon RF, Li D, Lawson HA, Madden PA, Costello JF et al. Exploring long-range genome interactions using the WashU Epigenome Browser. Nat Methods 2013; 10: 375–376.

    Article  CAS  Google Scholar 

  39. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013; 29: 15–21.

    Article  CAS  Google Scholar 

  40. Sanjana NE, Shalem O, Zhang F . Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 2014; 11: 783–784.

    Article  CAS  Google Scholar 

  41. Ng CE, Yokomizo T, Yamashita N, Cirovic B, Jin H, Wen Z et al. A Runx1 intronic enhancer marks hemogenic endothelial cells and hematopoietic stem cells. Stem Cells 2010; 28: 1869–1881.

    Article  CAS  Google Scholar 

  42. Langenau DM, Traver D, Ferrando AA, Kutok JL, Aster JC, Kanki JP et al. Myc-induced T cell leukemia in transgenic zebrafish. Science 2003; 299: 887–890.

    Article  CAS  Google Scholar 

  43. Feng H, Stachura DL, White RM, Gutierrez A, Zhang L, Sanda T et al. T-lymphoblastic lymphoma cells express high levels of BCL2, S1P1, and ICAM1, leading to a blockade of tumor cell intravasation. Cancer Cell 2010; 18: 353–366.

    Article  CAS  Google Scholar 

  44. Seita J, Sahoo D, Rossi DJ, Bhattacharya D, Serwold T, Inlay MA et al. Gene expression commons: an open platform for absolute gene expression profiling. PLoS One 2012; 7: e40321.

    Article  CAS  Google Scholar 

  45. Wang H, Zang C, Taing L, Arnett KL, Wong YJ, Pear WS et al. NOTCH1-RBPJ complexes drive target gene expression through dynamic interactions with superenhancers. Proc Natl Acad Sci USA 2014; 111: 705–710.

    Article  CAS  Google Scholar 

  46. Schnell S, Demolliere C, van den Berk P, Jacobs H . Gimap4 accelerates T-cell death. Blood 2006; 108: 591–599.

    Article  CAS  Google Scholar 

  47. Schulteis RD, Chu H, Dai X, Chen Y, Edwards B, Haribhai D et al. Impaired survival of peripheral T cells, disrupted NK/NKT cell development, and liver failure in mice lacking Gimap5. Blood 2008; 112: 4905–4914.

    Article  CAS  Google Scholar 

  48. Nitta T, Takahama Y . The lymphocyte guard-IANs: regulation of lymphocyte survival by IAN/GIMAP family proteins. Trends Immunol 2007; 28: 58–65.

    Article  CAS  Google Scholar 

  49. Saunders A, Webb LM, Janas ML, Hutchings A, Pascall J, Carter C et al. Putative GTPase GIMAP1 is critical for the development of mature B and T lymphocytes. Blood 2010; 115: 3249–3257.

    Article  CAS  Google Scholar 

  50. Hogquist KA, Jameson SC . The self-obsession of T cells: how TCR signaling thresholds affect fate 'decisions' and effector function. Nat Immunol 2014; 15: 815–823.

    Article  CAS  Google Scholar 

  51. Moralejo DH, Park HA, Speros SJ, MacMurray AJ, Kwitek AE, Jacob HJ et al. Genetic dissection of lymphopenia from autoimmunity by introgression of mutated Ian5 gene onto the F344 rat. J Autoimmun 2003; 21: 315–324.

    Article  CAS  Google Scholar 

  52. Barnes MJ, Aksoylar H, Krebs P, Bourdeau T, Arnold CN, Xia Y et al. Loss of T cell and B cell quiescence precedes the onset of microbial flora-dependent wasting disease and intestinal inflammation in Gimap5-deficient mice. J Immunol 2010; 184: 3743–3754.

    Article  CAS  Google Scholar 

  53. Schwefel D, Arasu BS, Marino SF, Lamprecht B, Kochert K, Rosenbaum E et al. Structural insights into the mechanism of GTPase activation in the GIMAP family. Structure 2013; 21: 550–559.

    Article  CAS  Google Scholar 

  54. Yano K, Carter C, Yoshida N, Abe T, Yamada A, Nitta T et al. Gimap3 and Gimap5 cooperate to maintain T-cell numbers in the mouse. Eur J Immunol 2014; 44: 561–572.

    Article  CAS  Google Scholar 

  55. Yui MA, Rothenberg EV . Developmental gene networks: a triathlon on the course to T cell identity. Nat Rev Immunol 2014; 14: 529–545.

    Article  CAS  Google Scholar 

  56. Weng AP, Ferrando AA, Lee W, Morris JPT, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  Google Scholar 

  57. O'Neil J, Calvo J, McKenna K, Krishnamoorthy V, Aster JC, Bassing CH et al. Activating Notch1 mutations in mouse models of T-ALL. Blood 2006; 107: 781–785.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Rick Young, Lee Lawton and members of the Sanda laboratory for their discussions and critical reviews. We thank Wei Zhong Leong and Stella Amanda for their help with the zebrafish experiments. We are grateful to the NUS zebrafish facility for zebrafish analyses. This research is supported by the National Research Foundation, Prime Minister’s Office, Singapore, under its Competitive Research Programme (award no. NRF-NRFF2013-02), National Medical Research Council, the Singapore Ministry of Health (NMRC/CIRG/1443/2016), and the US National Cancer Institute (1K99CA157951). The research is also supported by the National Research Foundation Singapore and the Singapore Ministry of Education under its Research Centres of Excellence initiative.

Author contributions

W-SL, SHT and TS performed the experiments; CQW, ZG and MO provided materials; W-SL, PCTN and TS analyzed the results; VT, MO and ATL supervised this study; and W-SL and TS designed the research and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Sanda.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liau, W., Tan, S., Ngoc, P. et al. Aberrant activation of the GIMAP enhancer by oncogenic transcription factors in T-cell acute lymphoblastic leukemia. Leukemia 31, 1798–1807 (2017). https://doi.org/10.1038/leu.2016.392

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.392

This article is cited by

Search

Quick links