Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute lymphoblastic leukemia

Inactivation of KLF4 promotes T-cell acute lymphoblastic leukemia and activates the MAP2K7 pathway

Abstract

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with a high incidence of relapse in pediatric ALL. Although most T-ALL patients exhibit activating mutations in NOTCH1, the cooperating genetic events required to accelerate the onset of leukemia and worsen disease progression are largely unknown. Here, we show that the gene encoding the transcription factor KLF4 is inactivated by DNA methylation in children with T-ALL. In mice, loss of KLF4 accelerated the development of NOTCH1-induced T-ALL by enhancing the G1-to-S transition in leukemic cells and promoting the expansion of leukemia-initiating cells. Mechanistically, KLF4 represses the gene encoding the kinase MAP2K7. Our results showed that in murine and pediatric T-ALL, loss of KLF4 leads to aberrant activation of MAP2K7 and of the downstream effectors JNK and ATF2. As a proof-of-concept for the development of a targeted therapy, administration of JNK inhibitors reduced the expansion of leukemia cells in cell-based and patient-derived xenograft models. Collectively, these data uncover a novel function for KLF4 in regulating the MAP2K7 pathway in T-ALL cells, which can be targeted to eradicate leukemia-initiating cells in T-ALL patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Pui CH, Robison LL, Look AT . Acute lymphoblastic leukaemia. Lancet 2008; 371: 1030–1043.

    CAS  Google Scholar 

  2. Pui CH, Carroll WL, Meshinchi S, Arceci RJ . Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol 2011; 29: 551–565.

    Article  Google Scholar 

  3. Pui CH, Evans WE . Treatment of acute lymphoblastic leukemia. N Engl J Med 2006; 354: 166–178.

    Article  CAS  Google Scholar 

  4. Ko RH, Ji L, Barnette P, Bostrom B, Hutchinson R, Raetz E et al. Outcome of patients treated for relapsed or refractory acute lymphoblastic leukemia: a Therapeutic Advances in Childhood Leukemia Consortium study. J Clin Oncol 2010; 28: 648–654.

    Article  Google Scholar 

  5. Aster JC, Pear WS, Blacklow SC . Notch signaling in leukemia. Annu Rev Pathol 2008; 3: 587–613.

    Article  CAS  Google Scholar 

  6. Grabher C, von Boehmer H, Look AT . Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer 2006; 6: 347–359.

    Article  CAS  Google Scholar 

  7. Weng AP, Ferrando AA, Lee W, JPt Morris, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  Google Scholar 

  8. Van Vlierberghe P, Ferrando A . The molecular basis of T cell acute lymphoblastic leukemia. J Clin Invest 2012; 122: 3398–3406.

    Article  CAS  Google Scholar 

  9. Chiang MY, Xu L, Shestova O, Histen G, L'Heureux S, Romany C et al. Leukemia-associated NOTCH1 alleles are weak tumor initiators but accelerate K-ras-initiated leukemia. J Clin Invest 2008; 118: 3181–3194.

    Article  CAS  Google Scholar 

  10. Rowland BD, Bernards R, Peeper DS . The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol 2005; 7: 1074–1082.

    Article  CAS  Google Scholar 

  11. Guan H, Xie L, Leithauser F, Flossbach L, Moller P, Wirth T et al. KLF4 is a tumor suppressor in B-cell non-Hodgkin lymphoma and in classic Hodgkin lymphoma. Blood 2010; 116: 1469–1478.

    Article  CAS  Google Scholar 

  12. Schoenhals M, Kassambara A, Veyrune JL, Moreaux J, Goldschmidt H, Hose D et al. Kruppel-like factor 4 blocks tumor cell proliferation and promotes drug resistance in multiple myeloma. Haematologica 2013; 98: 1442–1449.

    Article  CAS  Google Scholar 

  13. Guo X, Tang Y . KLF4 translation level is associated with differentiation stage of different pediatric leukemias in both cell lines and primary samples. Clin Exp Med 2013; 13: 99–107.

    Article  CAS  Google Scholar 

  14. Faber K, Bullinger L, Ragu C, Garding A, Mertens D, Miller C et al. CDX2-driven leukemogenesis involves KLF4 repression and deregulated PPARgamma signaling. J Clin Invest 2013; 123: 299–314.

    Article  CAS  Google Scholar 

  15. Valencia-Hipomicronlito A, Hernandez-Atenogenes M, Vega GG, Maldonado-Valenzuela A, Ramon G, Mayani H et al. Expression of KLF4 is a predictive marker for survival in pediatric Burkitt lymphoma. Leuk Lymphoma 2014; 55: 1806–1814.

    Article  Google Scholar 

  16. Kang H, Chen IM, Wilson CS, Bedrick EJ, Harvey RC, Atlas SR et al. Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. Blood 2010; 115: 1394–1405.

    Article  CAS  Google Scholar 

  17. Malik D, Kaul D, Chauhan N, Marwaha RK . miR-2909-mediated regulation of KLF4: a novel molecular mechanism for differentiating between B-cell and T-cell pediatric acute lymphoblastic leukemias. Mol Cancer 2014; 13: 175.

    Article  Google Scholar 

  18. Yamada T, Park CS, Mamonkin M, Lacorazza HD . Transcription factor ELF4 controls the proliferation and homing of CD8+ T cells via the Kruppel-like factors KLF4 and KLF2. Nat Immunol 2009; 10: 618–626.

    Article  CAS  Google Scholar 

  19. Yamada T, Gierach K, Lee PH, Wang X, Lacorazza HD . Cutting edge: Expression of the transcription factor E74-like factor 4 is regulated by the mammalian target of rapamycin pathway in CD8+ T cells. J Immunol 2010; 185: 3824–3828.

    Article  CAS  Google Scholar 

  20. Yamada T, Park CS, Burns A, Nakada D, Lacorazza HD . The cytosolic protein G0S2 maintains quiescence in hematopoietic stem cells. PLoS One 2012; 7: e38280.

    Article  CAS  Google Scholar 

  21. Homminga I, Pieters R, Langerak AW, de Rooi JJ, Stubbs A, Verstegen M et al. Integrated transcript and genome analyses reveal NKX2-1 and MEF2C as potential oncogenes in T cell acute lymphoblastic leukemia. Cancer Cell 2011; 19: 484–497.

    Article  CAS  Google Scholar 

  22. Karpurapu M, Ranjan R, Deng J, Chung S, Lee YG, Xiao L et al. Kruppel like factor 4 promoter undergoes active demethylation during monocyte/macrophage differentiation. PLoS One 2014; 9: e93362.

    Article  Google Scholar 

  23. Yang WT, Zheng PS . Promoter hypermethylation of KLF4 inactivates its tumor suppressor function in cervical carcinogenesis. PLoS One 2014; 9: e88827.

    Article  Google Scholar 

  24. Brenet F, Moh M, Funk P, Feierstein E, Viale AJ, Socci ND et al. DNA methylation of the first exon is tightly linked to transcriptional silencing. PLoS One 2011; 6: e14524.

    Article  CAS  Google Scholar 

  25. Segre JA, Bauer C, Fuchs E . Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat Genet 1999; 22: 356–360.

    Article  CAS  Google Scholar 

  26. Park CS, Lee PH, Yamada T, Burns A, Shen Y, Puppi M et al. Kruppel-like factor 4 (KLF4) promotes the survival of natural killer cells and maintains the number of conventional dendritic cells in the spleen. J Leuk Biol 2012; 91: 739–750.

    Article  CAS  Google Scholar 

  27. Pear WS, Aster JC, Scott ML, Hasserjian RP, Soffer B, Sklar J et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med 1996; 183: 2283–2291.

    Article  CAS  Google Scholar 

  28. Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991; 66: 649–661.

    Article  CAS  Google Scholar 

  29. Zhang W, Geiman DE, Shields JM, Dang DT, Mahatan CS, Kaestner KH et al. The gut-enriched Kruppel-like factor (Kruppel-like factor 4) mediates the transactivating effect of p53 on the p21WAF1/Cip1 promoter. J Biol Chem 2000; 275: 18391–18398.

    Article  CAS  Google Scholar 

  30. Wei D, Kanai M, Jia Z, Le X, Xie K . Kruppel-like factor 4 induces p27Kip1 expression in and suppresses the growth and metastasis of human pancreatic cancer cells. Cancer Res 2008; 68: 4631–4639.

    Article  CAS  Google Scholar 

  31. Yoon HS, Ghaleb AM, Nandan MO, Hisamuddin IM, Dalton WB, Yang VW . Kruppel-like factor 4 prevents centrosome amplification following gamma-irradiation-induced DNA damage. Oncogene 2005; 24: 4017–4025.

    Article  CAS  Google Scholar 

  32. Tournier C, Whitmarsh AJ, Cavanagh J, Barrett T, Davis RJ . The MKK7 gene encodes a group of c-Jun NH2-terminal kinase kinases. Mol Cell Biol 1999; 19: 1569–1581.

    Article  CAS  Google Scholar 

  33. Van Vlierberghe P, Ambesi-Impiombato A, De Keersmaecker K, Hadler M, Paietta E, Tallman MS et al. Prognostic relevance of integrated genetic profiling in adult T-cell acute lymphoblastic leukemia. Blood 2013; 122: 74–82.

    Article  CAS  Google Scholar 

  34. Hu Y, Smyth GK, ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods 2009; 347: 70–78.

    Article  CAS  Google Scholar 

  35. King B, Trimarchi T, Reavie L, Xu L, Mullenders J, Ntziachristos P et al. The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability. Cell 2013; 153: 1552–1566.

    Article  CAS  Google Scholar 

  36. Huang CY, Bredemeyer AL, Walker LM, Bassing CH, Sleckman BP . Dynamic regulation of c-Myc proto-oncogene expression during lymphocyte development revealed by a GFP-c-Myc knock-in mouse. Eur J Immunol 2008; 38: 342–349.

    Article  CAS  Google Scholar 

  37. Zhang T, Inesta-Vaquera F, Niepel M, Zhang J, Ficarro SB, Machleidt T et al. Discovery of potent and selective covalent inhibitors of JNK. Chem Biol 2012; 19: 140–154.

    Article  CAS  Google Scholar 

  38. Hussein M, Chai DC, Kyama CM, Mwenda JM, Palmer SS, Gotteland JP et al. c-Jun NH-terminal kinase inhibitor bentamapimod reduces induced endometriosis in baboons: an assessor-blind placebo-controlled randomized study. Fertil Steril 2015; 105: 815–824.

    Article  Google Scholar 

  39. Bennett BL, Sasaki DT, Murray BW, O'Leary EC, Sakata ST, Xu W et al. SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. Proc Natl Acad Sci USA 2001; 98: 13681–13686.

    Article  CAS  Google Scholar 

  40. Ma FY, Flanc RS, Tesch GH, Han Y, Atkins RC, Bennett BL et al. A pathogenic role for c-Jun amino-terminal kinase signaling in renal fibrosis and tubular cell apoptosis. J Am Soc Nephrol 2007; 18: 472–484.

    Article  CAS  Google Scholar 

  41. Chen J, Odenike O, Rowley JD . Leukaemogenesis: more than mutant genes. Nat Rev Cancer 2010; 10: 23–36.

    Article  CAS  Google Scholar 

  42. Li S, Mason C, Melnick A . Genetic and epigenetic heterogeneity in acute myeloid leukemia. Curr Opin Genet Dev 2016; 36: 100–106.

    Article  Google Scholar 

  43. Filarsky K, Garding A, Becker N, Wolf C, Zucknick M, Claus R et al. Kruppel-Like Factor 4 (KLF4) inactivation in chronic lymphocytic leukemia correlates with promoter DNA-methylation and can be reversed by inhibition of NOTCH signaling. Haematologica 2016; 101: e249–e253.

    Article  CAS  Google Scholar 

  44. Nordlund J, Backlin CL, Zachariadis V, Cavelier L, Dahlberg J, Ofverholm I et al. DNA methylation-based subtype prediction for pediatric acute lymphoblastic leukemia. Clin Epigenet 2015; 7: 11.

    Article  Google Scholar 

  45. Borssen M, Palmqvist L, Karrman K, Abrahamsson J, Behrendtz M, Heldrup J et al. Promoter DNA methylation pattern identifies prognostic subgroups in childhood T-cell acute lymphoblastic leukemia. PLoS One 2013; 8: e65373.

    Article  CAS  Google Scholar 

  46. Zhang P, Andrianakos R, Yang Y, Liu C, Lu W . Kruppel-like factor 4 (Klf4) prevents embryonic stem (ES) cell differentiation by regulating Nanog gene expression. J Biol Chem 2010; 285: 9180–9189.

    Article  CAS  Google Scholar 

  47. Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.

    Article  CAS  Google Scholar 

  48. Yu F, Li J, Chen H, Fu J, Ray S, Huang S et al. Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene 2011; 30: 2161–2172.

    Article  CAS  Google Scholar 

  49. Haeusgen W, Herdegen T, Waetzig V . The bottleneck of JNK signaling: molecular and functional characteristics of MKK4 and MKK7. Eur J Cell Biol 2011; 90: 536–544.

    Article  CAS  Google Scholar 

  50. Cui J, Wang Q, Wang J, Lv M, Zhu N, Li Y et al. Basal c-Jun NH2-terminal protein kinase activity is essential for survival and proliferation of T-cell acute lymphoblastic leukemia cells. Mol Cancer Ther 2009; 8: 3214–3222.

    Article  CAS  Google Scholar 

  51. Zoumpourlis V, Papassava P, Linardopoulos S, Gillespie D, Balmain A, Pintzas A . High levels of phosphorylated c-Jun, Fra-1, Fra-2 and ATF-2 proteins correlate with malignant phenotypes in the multistage mouse skin carcinogenesis model. Oncogene 2000; 19: 4011–4021.

    Article  CAS  Google Scholar 

  52. Papassava P, Gorgoulis VG, Papaevangeliou D, Vlahopoulos S, van Dam H, Zoumpourlis V . Overexpression of activating transcription factor-2 is required for tumor growth and progression in mouse skin tumors. Cancer Res 2004; 64: 8573–8584.

    Article  CAS  Google Scholar 

  53. Gozdecka M, Breitwieser W . The roles of ATF2 (activating transcription factor 2) in tumorigenesis. Biochem Soc Trans 2012; 40: 230–234.

    Article  CAS  Google Scholar 

  54. Li W, Jiang Z, Li T, Wei X, Zheng Y, Wu D et al. Genome-wide analyses identify KLF4 as an important negative regulator in T-cell acute lymphoblastic leukemia through directly inhibiting T-cell associated genes. Mol Cancer 2015; 14: 26.

    Article  Google Scholar 

  55. Dong C, Yang DD, Tournier C, Whitmarsh AJ, Xu J, Davis RJ et al. JNK is required for effector T-cell function but not for T-cell activation. Nature 2000; 405: 91–94.

    Article  CAS  Google Scholar 

  56. Dong C, Yang DD, Wysk M, Whitmarsh AJ, Davis RJ, Flavell RA . Defective T cell differentiation in the absence of Jnk1. Science 1998; 282: 2092–2095.

    Article  CAS  Google Scholar 

  57. Sabapathy K, Hu Y, Kallunki T, Schreiber M, David JP, Jochum W et al. JNK2 is required for efficient T-cell activation and apoptosis but not for normal lymphocyte development. Curr Biol 1999; 9: 116–125.

    Article  CAS  Google Scholar 

  58. Yang DD, Conze D, Whitmarsh AJ, Barrett T, Davis RJ, Rincon M et al. Differentiation of CD4+ T cells to Th1 cells requires MAP kinase JNK2. Immunity 1998; 9: 575–585.

    Article  CAS  Google Scholar 

  59. Manning AM, Davis RJ, Targeting JNK . for therapeutic benefit: from junk to gold? Nat Rev Drug Discov 2003; 2: 554–565.

    Article  CAS  Google Scholar 

  60. Liu X, Zhang J, Li J, Volk A, Breslin P, Zhang J et al. The synergistic repressive effect of NF-kappaB and JNK inhibitor on the clonogenic capacity of Jurkat leukemia cells. PLoS One 2014; 9: e115490.

    Article  Google Scholar 

Download references

Acknowledgements

We thank A Ferrando (Columbia University) for providing the T-ALL cell lines, W Pear (University of Pennsylvania) for supplying the retroviral constructs, A. Major for immunohistochemical analysis, P Labhart (Active Motif) for the bioinformatic analysis of KLF4 gene methylation and genome-wide binding, and Karen Prince for the preparation of figures. This work was supported by the Rally Foundation for Childhood Cancer Research (to HDL), the Gabrielle’s Angel Foundation for Cancer Research (to HDL), the Cancer Prevention Research Institute of Texas (to HDL), and the Cytometry and Cell Sorting Core at Baylor College of Medicine for their assistance (P30 AI036211, P30 CA125123, and S10 RR024574). The GEO accession numbers for gene expression data and ChIP-seq data are GSE75663 and GSE76474, respectively.

Author contributions

YS designed and performed most of the experiments, interpreted the data, and wrote the manuscript. CSP and KS carried out the initial studies in the Notch1-induced T-ALL mouse model. MP generated the different mouse models used in this study. TH and KR provided pediatric patient samples and commented on the work. TAM performed bioinformatic analyses. NG provided JNK inhibitors. JM analyzed gene expression in pediatric patients with T-ALL. HDL conceived of the project, designed and interpreted the experiments, directed the project as the principal investigator, wrote the manuscript, and funded the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H D Lacorazza.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Park, C., Suppipat, K. et al. Inactivation of KLF4 promotes T-cell acute lymphoblastic leukemia and activates the MAP2K7 pathway. Leukemia 31, 1314–1324 (2017). https://doi.org/10.1038/leu.2016.339

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.339

This article is cited by

Search

Quick links