Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem cell transplantation

Pre-transplant donor CD4 invariant NKT cell expansion capacity predicts the occurrence of acute graft-versus-host disease

Abstract

Clinically useful pre-transplant predictive factors of acute graft-versus-host-disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (allo-SCT) are lacking. We prospectively analyzed HSC graft content in CD34+, NK, conventional T, regulatory T and invariant natural killer T (iNKT) cells in 117 adult patients before allo-SCT. Results were correlated with occurrence of aGVHD and relapse. In univariate analysis, iNKT cells were the only graft cell populations associated with occurrence of aGVHD. In multivariate analysis, CD4 iNKT/T cell frequency could predict grade II-IV aGVHD in bone marrow and peripheral blood stem cell (PBSC) grafts, while CD4 iNKT expansion capacity was predictive in PBSC grafts. Receiver operating characteristic analyses determined the CD4 iNKT expansion factor as the best predictive factor of aGVHD. Incidence of grade II-IV aGVHD was reduced in patients receiving a graft with an expansion factor above versus below 6.83 (9.7 vs 80%, P<0.0001), while relapse incidence at two years was similar (P=0.5).The test reached 94% sensitivity and 100% specificity in the subgroup of patients transplanted with human leukocyte antigen 10/10 PBSCs without active disease. Analysis of this CD4 iNKT expansion capacity test may represent the first diagnostic tool allowing selection of the best donor to avoid severe aGVHD with preserved graft-versus-leukemia effect after peripheral blood allo-SCT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Ferrara JL, Levine JE, Reddy P, Holler E . Graft-versus-host disease. Lancet 2009; 373: 1550–1561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nash RA, Storb R . Graft-versus-host effect after allogeneic hematopoietic stem cell transplantation: GVHD and GVL. Curr Opin Immunol 1996; 8: 674–680.

    Article  CAS  PubMed  Google Scholar 

  3. Chang YJ, Zhao XY, Huo MR, Huang XJ . Expression of CD62L on donor CD4(+) T cells in allografts: correlation with graft-versus-host disease after unmanipulated allogeneic blood and marrow transplantation. J Clin Immunol 2009; 29: 696–704.

    Article  CAS  PubMed  Google Scholar 

  4. Yakoub-Agha I, Saule P, Depil S, Micol JB, Grutzmacher C, Boulanger-Villard F et al. A high proportion of donor CD4+ T cells expressing the lymph node-homing chemokine receptor CCR7 increases incidence and severity of acute graft-versus-host disease in patients undergoing allogeneic stem cell transplantation for hematological malignancy. Leukemia 2006; 20: 1557–1565.

    Article  CAS  PubMed  Google Scholar 

  5. Loschi M, Porcher R, Peffault de Latour R, Vanneaux V, Robin M, Xhaard A et al. High number of memory T cells is associated with higher risk of acute graft-versus-host disease after allogeneic stem cell transplantation. Biol Blood Marrow Transplant 2015; 21: 569–574.

    Article  CAS  PubMed  Google Scholar 

  6. Edinger M, Hoffmann P, Ermann J, Drago K, Fathman CG, Strober S et al. CD4+CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med 2003; 9: 1144–1150.

    Article  CAS  PubMed  Google Scholar 

  7. Trenado A, Sudres M, Tang Q, Maury S, Charlotte F, Gregoire S et al. Ex vivo-expanded CD4+CD25+ immunoregulatory T cells prevent graft-versus-host-disease by inhibiting activation/differentiation of pathogenic T cells. J Immunol 2006; 176: 1266–1273.

    Article  CAS  PubMed  Google Scholar 

  8. Hashimoto D, Asakura S, Miyake S, Yamamura T, Van Kaer L, Liu C et al. Stimulation of host NKT cells by synthetic glycolipid regulates acute graft-versus-host disease by inducing Th2 polarization of donor T cells. J Immunol 2005; 174: 551–556.

    Article  CAS  PubMed  Google Scholar 

  9. Kuwatani M, Ikarashi Y, Iizuka A, Kawakami C, Quinn G, Heike Y et al. Modulation of acute graft-versus-host disease and chimerism after adoptive transfer of in vitro-expanded invariant Valpha14 natural killer T cells. Immunol Lett 2006; 106: 82–90.

    Article  CAS  PubMed  Google Scholar 

  10. Morris ES, MacDonald KP, Rowe V, Banovic T, Kuns RD, Don AL et al. NKT cell-dependent leukemia eradication following stem cell mobilization with potent G-CSF analogs. J Clin Invest 2005; 115: 3093–3103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang J, Gao L, Liu Y, Ren Y, Xie R, Fan H et al. Adoptive therapy by transfusing expanded donor murine natural killer T cells can suppress acute graft-versus-host disease in allogeneic bone marrow transplantation. Transfusion 2009; 50: 407–417.

    Article  PubMed  Google Scholar 

  12. Pillai A, Teo P, George T, Mukhopadhyay A, Dejbakhsh-Jones S, Strober S . Alloantigen recognition is critical for CD8 T cell-mediated graft anti-tumor activity against murine BCL1 lymphoma after myeloablative bone marrow transplantation. Bone Marrow Transplant 2007; 40: 487–497.

    Article  CAS  PubMed  Google Scholar 

  13. Leveson-Gower DB, Olson JA, Sega EI, Luong RH, Baker J, Zeiser R et al. Low doses of natural killer T cells provide protection from acute graft-versus-host disease via an IL-4-dependent mechanism. Blood 2011; 117: 3220–3229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuns RD, Morris ES, Macdonald KP, Markey KA, Morris HM, Raffelt NC et al. Invariant natural killer T cell-natural killer cell interactions dictate transplantation outcome after alpha-galactosylceramide administration. Blood 2009; 113: 5999–6010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Magenau JM, Qin X, Tawara I, Rogers CE, Kitko C, Schlough M et al. Frequency of CD4(+)CD25(hi)FOXP3(+) regulatory T cells has diagnostic and prognostic value as a biomarker for acute graft-versus-host-disease. Biol Blood Marrow Transplant 2010; 16: 907–914.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ukena SN, Velaga S, Geffers R, Grosse J, Baron U, Buchholz S et al. Human regulatory T cells in allogeneic stem cell transplantation. Blood 2011; 118: e82–e92.

    Article  CAS  PubMed  Google Scholar 

  17. Kawano Y, Kim HT, Matsuoka K, Bascug G, McDonough S, Ho VT et al. Low telomerase activity in CD4+ regulatory T cells in patients with severe chronic GVHD after hematopoietic stem cell transplantation. Blood 2011; 118: 5021–5030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zorn E, Kim HT, Lee SJ, Floyd BH, Litsa D, Arumugarajah S et al. Reduced frequency of FOXP3+ CD4+CD25+ regulatory T cells in patients with chronic graft-versus-host disease. Blood 2005; 106: 2903–2911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Di Ianni M, Falzetti F, Carotti A, Terenzi A, Castellino F, Bonifacio E et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood 2011; 117: 3921–3928.

    Article  CAS  PubMed  Google Scholar 

  20. Koreth J, Matsuoka K, Kim HT, McDonough SM, Bindra B, Alyea EP 3rd et al. Interleukin-2 and regulatory T cells in graft-versus-host disease. N Engl J Med 2011; 365: 2055–2066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. de Lalla C, Rinaldi A, Montagna D, Azzimonti L, Bernardo ME, Sangalli LM et al. Invariant NKT cell reconstitution in pediatric leukemia patients given HLA-haploidentical stem cell transplantation defines distinct CD4+ and CD4- subset dynamics and correlates with remission state. J Immunol 2010; 186: 4490–4499.

    Article  Google Scholar 

  22. Beziat V, Nguyen S, Exley M, Achour A, Simon T, Chevallier P et al. Shaping of iNKT cell repertoire after unrelated cord blood transplantation. Clin Immunol 2010; 135: 364–373.

    Article  CAS  PubMed  Google Scholar 

  23. Rubio MT, Moreira-Teixeira L, Bachy E, Bouillie M, Milpied P, Coman T et al. Early posttransplantation donor-derived invariant natural killer T-cell recovery predicts the occurrence of acute graft-versus-host disease and overall survival. Blood 2012; 120: 2144–2154.

    Article  CAS  PubMed  Google Scholar 

  24. Rosenzwajg M, Dhedin N, Maury S, Bensimon G, Landau DA, Norol F et al. Regulatory T cell content in the bone marrow graft does not predict the occurrence of acute GVHD. Biol Blood Marrow Transplant 2010; 17: 265–269.

    Article  PubMed  Google Scholar 

  25. Chaidos A, Patterson S, Szydlo R, Chaudhry MS, Dazzi F, Kanfer E et al. Graft invariant natural killer T-cell dose predicts risk of acute graft-versus-host disease in allogeneic hematopoietic stem cell transplantation. Blood 2012; 119: 5030–5036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J et al. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant 1995; 15: 825–828.

    CAS  PubMed  Google Scholar 

  27. Shulman HM, Sullivan KM, Weiden PL, McDonald GB, Striker GE, Sale GE et al. Chronic graft-versus-host syndrome in man. A long-term clinicopathologic study of 20 Seattle patients. Am J Med 1980; 69: 204–217.

    Article  CAS  PubMed  Google Scholar 

  28. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 2009; 30: 899–911.

    Article  CAS  PubMed  Google Scholar 

  29. Martin E, Treiner E, Duban L, Guerri L, Laude H, Toly C et al. Stepwise development of MAIT cells in mouse and human. PLoS Biol 2009; 7: e54.

    Article  PubMed  Google Scholar 

  30. R Development Core Team. R: A Language and Environment for Statistical Computing. 2006 [cited ISBN 3-900051-07-0, Available at: http://www.R-project.org)].

  31. Therneau TM, Grambsch PM . Modeling Survival Data: Extending the Cox Model. Springer: New York, 2000.

    Book  Google Scholar 

  32. Tosteson TD, Buonaccorsi JP, Demidenko E, Wells WA . Measurement error and confidence intervals for ROC curves. Biom J 2005; 47: 409–416.

    Article  PubMed  Google Scholar 

  33. Sing T, Sander O, Beerenwinkel N, Lengauer T . ROCR: visualizing classifier performance in R. Bioinformatics 2005; 21: 3940–3941.

    Article  CAS  PubMed  Google Scholar 

  34. Schmid C, Schleuning M, Ledderose G, Tischer J, Kolb HJ . Sequential regimen of chemotherapy, reduced-intensity conditioning for allogeneic stem-cell transplantation, and prophylactic donor lymphocyte transfusion in high-risk acute myeloid leukemia and myelodysplastic syndrome. J Clin Oncol 2005; 23: 5675–5687.

    Article  PubMed  Google Scholar 

  35. Malard F, Labopin M, Chevallier P, Guillaume T, Duquesne A, Rialland F et al. Larger number of invariant natural killer T cells in PBSC allografts correlates with improved GVHD-free and progression-free survival. Blood 2016; 127: 1828–1835.

    Article  CAS  PubMed  Google Scholar 

  36. Pillai AB, George TI, Dutt S, Teo P, Strober S, Host NKT . cells can prevent graft-versus-host disease and permit graft antitumor activity after bone marrow transplantation. J Immunol 2007; 178: 6242–6251.

    Article  CAS  PubMed  Google Scholar 

  37. Pillai AB, George TI, Dutt S, Strober S . Host natural killer T cells induce an interleukin-4-dependent expansion of donor CD4+CD25+Foxp3+ T regulatory cells that protects against graft-versus-host disease. Blood 2009; 113: 4458–4467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lowsky R, Takahashi T, Liu YP, Dejbakhsh-Jones S, Grumet FC, Shizuru JA et al. Protective conditioning for acute graft-versus-host disease. N Engl J Med 2005; 353: 1321–1331.

    Article  CAS  PubMed  Google Scholar 

  39. Morris ES, MacDonald KP, Hill GR . Stem cell mobilization with G-CSF analogs: a rational approach to separate GVHD and GVL? Blood 2006; 107: 3430–3435.

    Article  CAS  PubMed  Google Scholar 

  40. Baev DV, Peng XH, Song L, Barnhart JR, Crooks GM, Weinberg KI et al. Distinct homeostatic requirements of CD4+ and CD4- subsets of Valpha24-invariant natural killer T cells in humans. Blood 2004; 104: 4150–4156.

    Article  CAS  PubMed  Google Scholar 

  41. Jing Y, Gravenstein S, Chaganty NR, Chen N, Lyerly KH, Joyce S et al. Aging is associated with a rapid decline in frequency, alterations in subset composition, and enhanced Th2 response in CD1d-restricted NKT cells from human peripheral blood. Exp Gerontol 2007; 42: 719–732.

    Article  CAS  PubMed  Google Scholar 

  42. Croudace JE, Curbishley SM, Mura M, Willcox CR, Illarionov PA, Besra GS et al. Identification of distinct human invariant natural killer T-cell response phenotypes to alpha-galactosylceramide. BMC Immunol 2008; 9: 71.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Jukes JP, Wood KJ, Jones ND . Bystander activation of iNKT cells occurs during conventional T-cell alloresponses. Am J Transplant 2012; 12: 590–599.

    Article  CAS  PubMed  Google Scholar 

  44. Liu TY, Uemura Y, Suzuki M, Narita Y, Hirata S, Ohyama H et al. Distinct subsets of human invariant NKT cells differentially regulate T helper responses via dendritic cells. Eur J Immunol 2008; 38: 1012–1023.

    Article  CAS  PubMed  Google Scholar 

  45. Schneidawind D, Pierini A, Alvarez M, Pan Y, Baker J, Buechele C et al. CD4+ invariant natural killer T cells protect from murine GVHD lethality through expansion of donor CD4+CD25+FoxP3+ regulatory T cells. Blood 2014; 124: 3320–3328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the NIH Tetramer Core Facility for providing CD1d tetramer reagents, the clinical investigation center (CIC) of Necker Hospital for their participation in clinical studies, the ‘Ligue Nationale contre le Cancer’, the APHP (Assistance Publique des Hopitaux de Paris), the ‘Cancéropole d’Ile de France’, and the ‘Institut National du Cancer’ for supportive grants. MM thanks Prof JV Melo (Adelaide, Australia) for critical reading of the manuscript. MM also acknowledges the educational grants received from the ‘Association for Training, Education and Research in Hematology, Immunology and Transplantation’ (ATERHIT). The Saint-Antoine hospital group (MTR, MM) is supported by several grants from the national Hospital Clinical Research Program (‘PHRC’) from the French National Cancer Institute.

Author contributions

MTR, MB and OH collected the data. MTR, FS, AG, DS, AB, EP, SNK, MM and OH provided the patients’ data. HTN, MC and OL provided materials and expertise in cell phenotyping. MTR, MB, NB, SU and OH analyzed the data. MTR, MB, MM, NB, SU and OH wrote and commented on the manuscript. All authors approve the final manuscript.

Key points

(1) Graft CD4 iNKT cell ex vivo expansion capacity is the best graft parameter capable of predicting the occurrence of acute GVHD after allogeneic stem cell transplantation from PBSC. (2) Donor CD4 iNKT cell expansion capacity test could be used to select the best donor before performing allogeneic stem cell transplantation with PBSC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M-T Rubio or O Hermine.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubio, MT., Bouillié, M., Bouazza, N. et al. Pre-transplant donor CD4 invariant NKT cell expansion capacity predicts the occurrence of acute graft-versus-host disease. Leukemia 31, 903–912 (2017). https://doi.org/10.1038/leu.2016.281

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.281

This article is cited by

Search

Quick links