Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular targets for therapy

Patient-derived xenotransplants can recapitulate the genetic driver landscape of acute leukemias

Abstract

Genomic studies have identified recurrent somatic mutations in acute leukemias. However, current murine models do not sufficiently encompass the genomic complexity of human leukemias. To develop preclinical models, we transplanted 160 samples from patients with acute leukemia (acute myeloid leukemia, mixed lineage leukemia, B-cell acute lymphoblastic leukemia, T-cell ALL) into immunodeficient mice. Of these, 119 engrafted with expected immunophenotype. Targeted sequencing of 374 genes and 265 frequently rearranged RNAs detected recurrent and novel genetic lesions in 48 paired primary tumor (PT) and patient-derived xenotransplant (PDX) samples. Overall, the frequencies of 274 somatic variant alleles correlated between PT and PDX samples, although the data were highly variable for variant alleles present at 0–10%. Seventeen percent of variant alleles were detected in either PT or PDX samples only. Based on variant allele frequency changes, 24 PT-PDX pairs were classified as concordant while the other 24 pairs showed various degree of clonal discordance. There was no correlation of clonal concordance with clinical parameters of diseases. Significantly more bone marrow samples than peripheral blood samples engrafted discordantly. These data demonstrate the utility of developing PDX banks for modeling human leukemia, and emphasize the importance of genomic profiling of PDX and patient samples to ensure concordance before performing mechanistic or therapeutic studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. ADAM. Acute myeloid leukemia. ADAM Medical Encyclopedia 2014 May 29.

  2. Walrath JC, Hawes JJ, Van Dyke T, Reilly KM . Genetically engineered mouse models in cancer research. Adv Cancer Res 2010; 106: 113–164.

    Article  CAS  Google Scholar 

  3. Scott CL, Becker MA, Haluska P, Samimi G . Patient-derived xenograft models to improve targeted therapy in epithelial ovarian cancer treatment. Front Oncol 2013; 3: 295.

    Article  Google Scholar 

  4. Malaise M, Neumeier M, Botteron C, Dohner K, Reinhardt D, Schlegelberger B et al. Stable and reproducible engraftment of primary adult and pediatric acute myeloid leukemia in NSG mice. Leukemia 2011; 25: 1635–1639.

    Article  CAS  Google Scholar 

  5. Sanchez PV, Perry RL, Sarry JE, Perl AE, Murphy K, Swider CR et al. A robust xenotransplantation model for acute myeloid leukemia. Leukemia 2009; 23: 2109–2117.

    Article  CAS  Google Scholar 

  6. Wunderlich M, Mizukawa B, Chou FS, Sexton C, Shrestha M, Saunthararajah Y et al. AML cells are differentially sensitive to chemotherapy treatment in a human xenograft model. Blood 2013; 121: e90–e97.

    Article  CAS  Google Scholar 

  7. Ma X, Edmonson M, Yergeau D, Muzny DM, Hampton OA, Rusch M et al. Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia. Nat Commun 2015; 6: 6604.

    Article  CAS  Google Scholar 

  8. Notta F, Mullighan CG, Wang JC, Poeppl A, Doulatov S, Phillips LA et al. Evolution of human BCR-ABL1 lymphoblastic leukaemia-initiating cells. Nature 2011; 469: 362–367.

    Article  CAS  Google Scholar 

  9. Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 2012; 481: 157–163.

    Article  CAS  Google Scholar 

  10. Welch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 2012; 150: 264–278.

    Article  CAS  Google Scholar 

  11. Klco JM, Spencer DH, Miller CA, Griffith M, Lamprecht TL, O'Laughlin M et al. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia. Cancer Cell 2014; 25: 379–392.

    Article  CAS  Google Scholar 

  12. Aparicio S, Hidalgo M, Kung AL . Examining the utility of patient-derived xenograft mouse models. Nat Rev Cancer 2015; 15: 311–316.

    Article  CAS  Google Scholar 

  13. Vick B, Rothenberg M, Sandhofer N, Carlet M, Finkenzeller C, Krupka C et al. An advanced preclinical mouse model for acute myeloid leukemia using patients' cells of various genetic subgroups and in vivo bioluminescence imaging. PloS One 2015; 10: e0120925.

    Article  Google Scholar 

  14. Frampton GM, Fichtenholtz A, Otto GA, Wang K, Downing SR, He J et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat Biotechnol 2013; 31: 1023–1031.

    Article  CAS  Google Scholar 

  15. Cheng DT, Cheng J, Mitchell TN, Syed A, Zehir A, Mensah NY et al. Detection of mutations in myeloid malignancies through paired-sample analysis of microdroplet-PCR deep sequencing data. J Mol Diagn 2014; 16: 504–518.

    Article  CAS  Google Scholar 

  16. Li S, Shen D, Shao J, Crowder R, Liu W, Prat A et al. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Rep 2013; 4: 1116–1130.

    Article  CAS  Google Scholar 

  17. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res 2015; 43 (Database issue): D805–D811.

    Article  CAS  Google Scholar 

  18. He J, Abdel-Wahab O, Nahas MK, Wang K, Rampal RK, Intlekofer AM et al. Integrated genomic DNA/RNA profiling of hematologic malignancies in the clinical setting. Blood 2016 March, 10.

  19. Cancer Genome Atlas Research N. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059–2074.

    Article  Google Scholar 

  20. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 2012; 481: 506–510.

    Article  CAS  Google Scholar 

  21. Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW et al. Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 2010; 464: 999–1005.

    Article  CAS  Google Scholar 

  22. Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 2014; 506: 328–333.

    Article  CAS  Google Scholar 

  23. McCormack E, Bruserud O, Gjertsen BT . Review: genetic models of acute myeloid leukaemia. Oncogene 2008; 27: 3765–3779.

    Article  CAS  Google Scholar 

  24. Xu D, Liu X, Yu WM, Meyerson HJ, Guo C, Gerson SL et al. Non-lineage/stage-restricted effects of a gain-of-function mutation in tyrosine phosphatase Ptpn11 (Shp2) on malignant transformation of hematopoietic cells. J Exp Med 2011; 208: 1977–1988.

    Article  CAS  Google Scholar 

  25. Welcker M, Clurman BE . FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer 2008; 8: 83–93.

    Article  CAS  Google Scholar 

  26. Kats LM, Reschke M, Taulli R, Pozdnyakova O, Burgess K, Bhargava P et al. Proto-oncogenic role of mutant IDH2 in leukemia initiation and maintenance. Cell Stem Cell 2014; 14: 329–341.

    Article  CAS  Google Scholar 

  27. Distler E, Wolfel C, Kohler S, Nonn M, Kaus N, Schnurer E et al. Acute myeloid leukemia (AML)-reactive cytotoxic T lymphocyte clones rapidly expanded from CD8(+) CD62L((high)+) T cells of healthy donors prevent AML engraftment in NOD/SCID IL2Rgamma(null) mice. Exp Hematol 2008; 36: 451–463.

    Article  CAS  Google Scholar 

  28. Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD Jr et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 2009; 138: 286–299.

    Article  CAS  Google Scholar 

  29. Taussig DC, Miraki-Moud F, Anjos-Afonso F, Pearce DJ, Allen K, Ridler C et al. Anti-CD38 antibody-mediated clearance of human repopulating cells masks the heterogeneity of leukemia-initiating cells. Blood 2008; 112: 568–575.

    Article  CAS  Google Scholar 

  30. Mohi MG, Williams IR, Dearolf CR, Chan G, Kutok JL, Cohen S et al. Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell 2005; 7: 179–191.

    Article  CAS  Google Scholar 

  31. Anderson K, Lutz C, van Delft FW, Bateman CM, Guo Y, Colman SM et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 2011; 469: 356–361.

    Article  CAS  Google Scholar 

  32. Billerbeck E, Barry WT, Mu K, Dorner M, Rice CM, Ploss A . Development of human CD4+FoxP3+ regulatory T cells in human stem cell factor-, granulocyte-macrophage colony-stimulating factor-, and interleukin-3-expressing NOD-SCID IL2Rgamma(null) humanized mice. Blood 2011; 117: 3076–3086.

    Article  CAS  Google Scholar 

  33. Rongvaux A, Willinger T, Martinek J, Strowig T, Gearty SV, Teichmann LL et al. Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol 2014; 32: 364–372.

    Article  CAS  Google Scholar 

  34. Pandey KR, Maden N, Poudel B, Pradhananga S, Sharma AK . The curation of genetic variants: difficulties and possible solutions. Genomics Proteomics Bioinformatics 2012; 10: 317–325.

    Article  CAS  Google Scholar 

  35. Stein EM, Altman JK, Collins R, DeAngelo DJ, Fathi AT, Flinn I et al. AG-221, an oral, selective, first-in-class, potent inhibitor of the IDH2 mutant metabolic enzyme, induces durable remissions in a phase I study in patients with IDH2 mutation positive advanced hematologic malignancies. Blood 2014; 2014, ASH abstract (115).

Download references

Acknowledgements

We thank Chun-Wei (David) Chen, Omar Abdel-Wahab and Alex Kentsis for critical discussion of the manuscript, Barb Every for editor help. Research funding was provided by the Kleberg Foundation and R01 CA176745/CA/NCI NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A V Krivtsov.

Ethics declarations

Competing interests

KW, MKN, JH, ALD, GMF, DL, SR, PJS, EMS, TB, GAO, RY, VAM are employees and equity holders, RLL is a consultant for Foundation Medicine, Inc.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Sanchez-Martin, M., Wang, X. et al. Patient-derived xenotransplants can recapitulate the genetic driver landscape of acute leukemias. Leukemia 31, 151–158 (2017). https://doi.org/10.1038/leu.2016.166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.166

This article is cited by

Search

Quick links