Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Targets for Therapy

NFATc1 as a therapeutic target in FLT3-ITD-positive AML

Abstract

Internal tandem duplications (ITD) in the Fms-related tyrosine kinase 3 receptor (FLT3) are associated with a dismal prognosis in acute myeloid leukemia (AML). FLT3 inhibitors such as sorafenib may improve outcome, but only few patients display long-term responses, prompting the search for underlying resistance mechanisms and therapeutic strategies to overcome them. Here we identified that the nuclear factor of activated T cells, NFATc1, is frequently overexpressed in FLT3-ITD-positive (FLT3-ITD+) AML. NFATc1 knockdown using inducible short hairpin RNA or pharmacological NFAT inhibition with cyclosporine A (CsA) or VIVIT significantly augmented sorafenib-induced apoptosis of FLT3-ITD+ cells. CsA also potently overcame sorafenib resistance in FLT3-ITD+ cell lines and primary AML. Vice versa, de novo expression of a constitutively nuclear NFATc1-mutant mediated instant and robust sorafenib resistance in vitro. Intriguingly, FLT3-ITD+ AML patients (n=26) who received CsA as part of their rescue chemotherapy displayed a superior outcome when compared with wild-type FLT3 (FLT3-WT) AML patients. Our data unveil NFATc1 as a novel mediator of sorafenib resistance in FLT3-ITD+ AML. CsA counteracts sorafenib resistance and may improve treatment outcome in AML by means of inhibiting NFAT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Yokota S, Kiyoi H, Nakao M, Iwai T, Misawa S, Okuda T et al. Internal tandem duplication of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia 1997; 11: 1605–1609.

    Article  CAS  PubMed  Google Scholar 

  2. Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 1999; 93: 3074–3080.

    CAS  PubMed  Google Scholar 

  3. Thiede C, Steudel C, Mohr B, Schaich M, Schäkel U, Platzbecker U et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002; 99: 4326–4335.

    Article  CAS  PubMed  Google Scholar 

  4. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001; 98: 1752–1759.

    Article  CAS  PubMed  Google Scholar 

  5. Fröhling S, Schlenk RF, Breitruck J, Benner A, Kreitmeier S, Tobis K et al. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML Study Group Ulm. Blood 2002; 100: 4372–4380.

    Article  PubMed  Google Scholar 

  6. Hayakawa F, Towatari M, Kiyoi H, Tanimoto M, Kitamura T, Saito H et al. Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene 2000; 19: 624–631.

    Article  CAS  PubMed  Google Scholar 

  7. Lee BH, Tothova Z, Levine RL, Anderson K, Buza-Vidas N, Cullen DE et al. FLT3 mutations confer enhanced proliferation and survival properties to multipotent progenitors in a murine model of chronic myelomonocytic leukemia. Cancer Cell 2007; 12: 367–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Drexler HG . Expression of FLT3 receptor and response to FLT3 ligand by leukemic cells. Leukemia 1996; 10: 588–599.

    CAS  PubMed  Google Scholar 

  9. Smith CC, Wang Q, Chin C-S, Salerno S, Damon LE, Levis MJ et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature 2012; 485: 260–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Weisberg E, Boulton C, Kelly LM, Manley P, Fabbro D, Meyer T et al. Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell 2002; 1: 433–443.

    Article  CAS  PubMed  Google Scholar 

  11. Kindler T, Lipka DB, Fischer T . FLT3 as a therapeutic target in AML: still challenging after all these years. Blood 2010; 116: 5089–5102.

    Article  CAS  PubMed  Google Scholar 

  12. Pratz KW, Levis MJ . Bench to bedside targeting of FLT3 in acute leukemia. Curr Drug Targets 2010; 11: 781–789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang W, Konopleva M, Shi Y-X, McQueen T, Harris D, Ling X et al. Mutant FLT3: a direct target of sorafenib in acute myelogenous leukemia. J Natl Cancer Inst 2008; 100: 184–198.

    Article  CAS  PubMed  Google Scholar 

  14. Metzelder S, Wang Y, Wollmer E, Wanzel M, Teichler S, Chaturvedi A et al. Compassionate use of sorafenib in FLT3-ITD-positive acute myeloid leukemia: sustained regression before and after allogeneic stem cell transplantation. Blood 2009; 113: 6567–6571.

    Article  CAS  PubMed  Google Scholar 

  15. Metzelder SK, Schroeder T, Finck A, Scholl S, Fey M, Götze K et al. High activity of sorafenib in FLT3-ITD-positive acute myeloid leukemia synergizes with allo-immune effects to induce sustained responses. Leukemia 2012; 26: 2353–2359.

    Article  CAS  PubMed  Google Scholar 

  16. Hu S, Niu H, Inaba H, Orwick S, Rose C, Panetta JC et al. Activity of the multikinase inhibitor sorafenib in combination with cytarabine in acute myeloid leukemia. J Natl Cancer Inst 2011; 103: 893–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ravandi F, Arana YiC, Cortes JE, Levis M, Faderl S, Garcia-Manero G et al. Final report of phase II study of sorafenib, cytarabine and idarubicin for initial therapy in younger patients with acute myeloid leukemia. Leukemia 2014; 28: 1543–1545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ravandi F, Alattar ML, Grunwald MR, Rudek MA, Rajkhowa T, Richie MA et al. Phase 2 study of azacytidine plus sorafenib in patients with acute myeloid leukemia and FLT-3 internal tandem duplication mutation. Blood 2013; 121: 4655–4662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zarrinkar PP, Gunawardane RN, Cramer MD, Gardner MF, Brigham D, Belli B et al. AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood 2009; 114: 2984–2992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cortes JE, Kantarjian H, Foran JM, Ghirdaladze D, Zodelava M, Borthakur G et al. Phase I study of quizartinib administered daily to patients with relapsed or refractory acute myeloid leukemia irrespective of FMS-like tyrosine kinase 3-internal tandem duplication status. J Clin Oncol 2013; 31: 3681–3687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Man CH, Fung TK, Ho C, Han HHC, Chow HCH, Ma ACH et al. Sorafenib treatment of FLT3-ITD(+) acute myeloid leukemia: favorable initial outcome and mechanisms of subsequent nonresponsiveness associated with the emergence of a D835 mutation. Blood 2012; 119: 5133–5143.

    Article  CAS  PubMed  Google Scholar 

  22. Baker SD, Zimmerman EI, Wang Y-D, Orwick S, Zatechka DS, Buaboonnam J et al. Emergence of polyclonal FLT3 tyrosine kinase domain mutations during sequential therapy with sorafenib and sunitinib in FLT3-ITD-positive acute myeloid leukemia. Clin Cancer Res 2013; 19: 5758–5768.

    Article  CAS  PubMed  Google Scholar 

  23. Heidel F, Solem FK, Breitenbuecher F, Lipka DB, Kasper S, Thiede MH et al. Clinical resistance to the kinase inhibitor PKC412 in acute myeloid leukemia by mutation of Asn-676 in the FLT3 tyrosine kinase domain. Blood 2006; 107: 293–300.

    Article  CAS  PubMed  Google Scholar 

  24. Zheng R, Levis M, Piloto O, Brown P, Baldwin BR, Gorin NC et al. FLT3 ligand causes autocrine signaling in acute myeloid leukemia cells. Blood 2004; 103: 267–274.

    Article  CAS  PubMed  Google Scholar 

  25. Pratz KW, Sato T, Murphy KM, Stine A, Rajkhowa T, Levis M . FLT3-mutant allelic burden and clinical status are predictive of response to FLT3 inhibitors in AML. Blood 2010; 115: 1425–1432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kayser S, Schlenk RF, Londono MC, Breitenbuecher F, Wittke K, Du J et al. Insertion of FLT3 internal tandem duplication in the tyrosine kinase domain-1 is associated with resistance to chemotherapy and inferior outcome. Blood 2009; 114: 2386–2392.

    Article  CAS  PubMed  Google Scholar 

  27. Grunwald MR, Levis MJ . FLT3 inhibitors for acute myeloid leukemia: a review of their efficacy and mechanisms of resistance. Int J Hematol 2013; 97: 683–694.

    Article  CAS  PubMed  Google Scholar 

  28. Macian F . NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 2005; 5: 472–484.

    Article  CAS  PubMed  Google Scholar 

  29. Müller MR, Rao A . NFAT, immunity and cancer: a transcription factor comes of age. Nat Rev Immunol 2010; 10: 645–656.

    Article  PubMed  Google Scholar 

  30. Northrop JP, Ho SN, Chen L, Thomas DJ, Timmerman LA, Nolan GP et al. NF-AT components define a family of transcription factors targeted in T-cell activation. Nature 1994; 369: 497–502.

    Article  CAS  PubMed  Google Scholar 

  31. Jain J, McCaffrey PG, Miner Z, Kerppola TK, Lambert JN, Verdine GL et al. The T-cell transcription factor NFATp is a substrate for calcineurin and interacts with Fos and Jun. Nature 1993; 365: 352–355.

    Article  CAS  PubMed  Google Scholar 

  32. Clipstone NA, Crabtree GR . Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature 1992; 357: 695–697.

    Article  CAS  PubMed  Google Scholar 

  33. Hogan WJ, Storb R . Use of cyclosporine in hematopoietic cell transplantation. Transplant Proc 2004; 36: 367S–371S.

    Article  CAS  PubMed  Google Scholar 

  34. Mancini M, Toker A . NFAT proteins: emerging roles in cancer progression. Nat Rev Cancer 2009; 9: 810–820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Buchholz M, Schatz A, Wagner M, Michl P, Linhart T, Adler G et al. Overexpression of c-myc in pancreatic cancer caused by ectopic activation of NFATc1 and the Ca2+/calcineurin signaling pathway. EMBO J 2006; 25: 3714–3724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Baumgart S, Chen N-M, Siveke JT, König A, Zhang J-S, Singh SK et al. Inflammation-Induced NFATc1-STAT3 Transcription Complex Promotes Pancreatic Cancer Initiation by KrasG12D. Cancer Discov 2014; 4: 688–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Singh SK, Baumgart S, Singh G, König AO, Reutlinger K, Hofbauer LC et al. Disruption of a nuclear NFATc2 protein stabilization loop confers breast and pancreatic cancer growth suppression by zoledronic acid. J Biol Chem 2011; 286: 28761–28771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kiani A, Kuithan H, Kuithan F, Kyttälä S, Habermann I, Temme A et al. Expression analysis of nuclear factor of activated T cells (NFAT) during myeloid differentiation of CD34+ cells: regulation of Fas ligand gene expression in megakaryocytes. Exp Hematol 2007; 35: 757–770.

    Article  CAS  PubMed  Google Scholar 

  39. Kiani A, Habermann I, Haase M, Feldmann S, Boxberger S, Sanchez-Fernandez MA et al. Expression and regulation of NFAT (nuclear factors of activated T cells) in human CD34+ cells: down-regulation upon myeloid differentiation. J Leukoc Biol 2004; 76: 1057–1065.

    Article  CAS  PubMed  Google Scholar 

  40. Marafioti T, Marafiot T, Pozzobon M, Hansmann M-L, Ventura R, Pileri SA et al. The NFATc1 transcription factor is widely expressed in white cells and translocates from the cytoplasm to the nucleus in a subset of human lymphomas. Br J Haematol 2005; 128: 333–342.

    Article  CAS  PubMed  Google Scholar 

  41. Pham LV, Tamayo AT, Yoshimura LC, Lin-Lee Y-C, Ford RJ . Constitutive NF-kappaB and NFAT activation in aggressive B-cell lymphomas synergistically activates the CD154 gene and maintains lymphoma cell survival. Blood 2005; 106: 3940–3947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Medyouf H, Alcalde H, Berthier C, Guillemin MC, Santos dos NR, Janin A et al. Targeting calcineurin activation as a therapeutic strategy for T-cell acute lymphoblastic leukemia. Nat Med 2007; 13: 736–741.

    Article  CAS  PubMed  Google Scholar 

  43. Gregory MA, Phang TL, Neviani P, Alvarez-Calderon F, Eide CA, O'Hare T et al. Wnt/Ca2+/NFAT signaling maintains survival of Ph+ leukemia cells upon inhibition of Bcr-Abl. Cancer Cell 2010; 18: 74–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Burchert A, Wang Y, Cai D, Bubnoff von N, Paschka P, Müller-Brüsselbach S et al. Compensatory PI3-kinase/Akt/mTor activation regulates imatinib resistance development. Leukemia 2005; 19: 1774–1782.

    Article  CAS  PubMed  Google Scholar 

  45. Wang Y, Cai D, Brendel C, Barett C, Erben P, Manley PW et al. Adaptive secretion of granulocyte-macrophage colony-stimulating factor (GM-CSF) mediates imatinib and nilotinib resistance in BCR/ABL+ progenitors via JAK-2/STAT-5 pathway activation. Blood 2007; 109: 2147–2155.

    Article  CAS  PubMed  Google Scholar 

  46. Kumari A, Brendel C, Hochhaus A, Neubauer A, Burchert A . Low BCR-ABL expression levels in hematopoietic precursor cells enable persistence of chronic myeloid leukemia under imatinib. Blood 2012; 119: 530–539.

    Article  CAS  PubMed  Google Scholar 

  47. Porter CM, Clipstone NA . Sustained NFAT signaling promotes a Th1-like pattern of gene expression in primary murine CD4+ T cells. J Immunol 2002; 168: 4936–4945.

    Article  CAS  PubMed  Google Scholar 

  48. Chou T-C . Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 2006; 58: 621–681.

    Article  CAS  PubMed  Google Scholar 

  49. Flanagan WM, Corthésy B, Bram RJ, Crabtree GR . Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A. Nature 1991; 352: 803–807.

    Article  CAS  PubMed  Google Scholar 

  50. Park J, Yaseen NR, Hogan PG, Rao A, Sharma S . Phosphorylation of the transcription factor NFATp inhibits its DNA binding activity in cyclosporin A-treated human B and T cells. J Biol Chem 1995; 270: 20653–20659.

    Article  CAS  PubMed  Google Scholar 

  51. Aramburu J, Yaffe MB, López-Rodríguez C, Cantley LC, Hogan PG, Rao A . Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A. Science 1999; 285: 2129–2133.

    Article  CAS  PubMed  Google Scholar 

  52. Thakur Das M, Salangsang F, Landman AS, Sellers WR, Pryer NK, Levesque MP et al. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature 2013; 494: 251–255.

    Article  Google Scholar 

  53. Linenberger ML, Hong T, Flowers D, Sievers EL, Gooley TA, Bennett JM et al. Multidrug-resistance phenotype and clinical responses to gemtuzumab ozogamicin. Blood 2001; 98: 988–994.

    Article  CAS  PubMed  Google Scholar 

  54. Walter RB, Raden BW, Hong TC, Flowers DA, Bernstein ID, Linenberger ML . Multidrug resistance protein attenuates gemtuzumab ozogamicin-induced cytotoxicity in acute myeloid leukemia cells. Blood 2003; 102: 1466–1473.

    Article  CAS  PubMed  Google Scholar 

  55. Fischer T, Stone RM, DeAngelo DJ, Galinsky I, Estey E, Lanza C et al. Phase IIB trial of oral Midostaurin (PKC412), the FMS-like tyrosine kinase 3 receptor (FLT3) and multi-targeted kinase inhibitor, in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome with either wild-type or mutated FLT3. J Clin Oncol 2010; 28: 4339–4345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pratz KW, Cho E, Levis MJ, Karp JE, Gore SD, McDevitt M et al. A pharmacodynamic study of sorafenib in patients with relapsed and refractory acute leukemias. Leukemia 2010; 24: 1437–1444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nooter K, Sonneveld P, Oostrum R, Herweijer H, Hagenbeek T, Valerio D . Overexpression of the mdr1 gene in blast cells from patients with acute myelocytic leukemia is associated with decreased anthracycline accumulation that can be restored by cyclosporin-A. Int J Cancer 1990; 45: 263–268.

    Article  CAS  PubMed  Google Scholar 

  58. List AF, Kopecky KJ, Willman CL, Head DR, Persons DL, Slovak ML et al. Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: a Southwest Oncology Group study. Blood 2001; 98: 3212–3220.

    Article  CAS  PubMed  Google Scholar 

  59. Remmele W, Stegner HE . Recommendation for uniform definition of an immunoreactive score (IRS) for immunohistochemical estrogen receptor detection (ER-ICA) in breast cancer tissue. Pathologe 1987; 8: 138–140.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the ‘Deutsche Forschungsgemeinschaft, DFG, Klinische Forschergruppe 210 ‘Genetics of Drug resistance in Cancer’, TP7; the Deutsche José Carreras Leukämiestiftung (AR12/12 and AH06/01) to AB and AN, respectively, and by the Deutsche Krebshilfe (110092) to CM. We are indebted to Tamara Alpermann from the Münchner Leukemia Laboratory, MLL, for performing the microarrays and analysis. We would also like to thank Sonja Tajstra for their technical assistance. We thank Gavin Giel for performing cell sorting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Burchert.

Ethics declarations

Competing interests

AB received funding from Bayer Healthcare in support of the SORMAIN trial, which is testing sorafenib maintenance therapy after allogeneic stem cell transplantation in FLT3-ITD+ AML (EudraCT 2010-018539-16). The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metzelder, S., Michel, C., von Bonin, M. et al. NFATc1 as a therapeutic target in FLT3-ITD-positive AML. Leukemia 29, 1470–1477 (2015). https://doi.org/10.1038/leu.2015.95

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.95

This article is cited by

Search

Quick links