Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Leukemogenesis

Loss of Dnmt3a and endogenous KrasG12D/+ cooperate to regulate hematopoietic stem and progenitor cell functions in leukemogenesis

Abstract

Oncogenic NRAS and KRAS mutations are prevalent in human juvenile and chronic myelomonocytic leukemia (JMML/CMML). However, additional genetic mutations cooperating with oncogenic RAS in JMML/ CMML progression and/or their transformation to acute myeloid leukemia (AML) remain largely unknown. Here we tested the potential genetic interaction of DNMT3A mutations and oncogenic RAS mutations in leukemogenesis. We found that Dnmt3a−/− induces multiple hematopoietic phenotypes after a prolonged latency, including T-cell expansion in the peripheral blood, stress erythropoiesis in the spleen and myeloid malignancies in the liver. Dnmt3a−/− significantly promoted JMML/CMML progression and shortened the survival of KrasG12D/+ mice in a cell-autonomous manner. Similarly, downregulating Dnmt3a also promoted myeloid malignancies in NrasG12D/+ mice. Further studies show that Dnmt3a deficiency rescues KrasG12D/+-mediated depletion of hematopoietic stem cells and increases self-renewal of KrasG12D/+ myeloid progenitors (MPs). Moreover, ~33% of animals developed an AML-like disease, which is driven by KrasG12D/+; Dnmt3a−/− MPs. Consistent with our result, COSMIC database mining demonstrates that the combination of oncogenic RAS and DNMT3A mutations exclusively occurred in patients with JMML, CMML or AML. Our results suggest that DNMT3A mutations and oncogenic RAS cooperate to regulate hematopoietic stem and progenitor cells and promote myeloid malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ward AF, Braun BS, Shannon KM . Targeting oncogenic Ras signaling in hematologic malignancies. Blood 2012; 120: 3397–3406.

    Article  CAS  Google Scholar 

  2. Braun BS, Tuveson DA, Kong N, Le DT, Kogan SC, Rozmus J et al. Somatic activation of oncogenic Kras in hematopoietic cells initiates a rapidly fatal myeloproliferative disorder. Proc Natl Acad Sci USA 2004; 101: 597–602.

    Article  CAS  Google Scholar 

  3. Chan IT, Kutok JL, Williams IR, Cohen S, Kelly L, Shigematsu H et al. Conditional expression of oncogenic K-ras from its endogenous promoter induces a myeloproliferative disease. J Clin Invest 2004; 113: 528–538.

    Article  CAS  Google Scholar 

  4. Zhang J, Wang J, Liu Y, Sidik H, Young KH, Lodish HF et al. Oncogenic Kras-induced leukemogeneis: hematopoietic stem cells as the initial target and lineage-specific progenitors as the potential targets for final leukemic transformation. Blood 2009; 113: 1304–1314.

    Article  CAS  Google Scholar 

  5. Du J, Liu Y, Meline B, Kong G, Tan LX, Lo JC et al. Loss of CD44 attenuates aberrant GM-CSF signaling in Kras G12D hematopoietic progenitor/precursor cells and prolongs the survival of diseased animals. Leukemia 2013; 27: 754–757.

    Article  CAS  Google Scholar 

  6. Wang JY, Liu YG, Li ZY, Du J, Ryu MJ, Taylor PR et al. Endogenous oncogenic Nras mutation leads to aberrant GM-CSF signaling in granulocytic/monocytic precursors in a murine model of chronic myelomonocytic leukemia. Blood 2010; 116: 5991–6002.

    Article  CAS  Google Scholar 

  7. Li Q, Haigis KM, McDaniel A, Harding-Theobald E, Kogan SC, Akagi K et al. Hematopoiesis and leukemogenesis in mice expressing oncogenic NrasG12D from the endogenous locus. Blood 2011; 117: 2022–2032.

    Article  CAS  Google Scholar 

  8. Wang JY, Liu YG, Li ZY, Wang ZD, Tan LX, Ryu MJ et al. Endogenous oncogenic Nras mutation initiates hematopoietic malignancies in a dose- and cell type-dependent manner. Blood 2011; 118: 368–379.

    Article  CAS  Google Scholar 

  9. Shih AH, Abdel-Wahab O, Patel JP, Levine RL . The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer 2012; 12: 599–612.

    Article  CAS  Google Scholar 

  10. Dunbar AJ, Gondek LP, O'Keefe CL, Makishima H, Rataul MS, Szpurka H et al. 250 K single nucleotide polymorphism array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies. Cancer Res 2008; 68: 10349–10357.

    Article  CAS  Google Scholar 

  11. Kohlmann A, Grossmann V, Klein HU, Schindela S, Weiss T, Kazak B et al. Next-generation sequencing technology reveals a characteristic pattern of molecular mutations in 72.8% of chronic myelomonocytic leukemia by detecting frequent alterations in TET2, CBL, RAS, and RUNX1. J Clin Oncol 2010; 28: 3858–3865.

    Article  CAS  Google Scholar 

  12. Kato M, Yasui N, Seki M, Kishimoto H, Sato-Otsubo A, Hasegawa D et al. Aggressive transformation of juvenile myelomonocytic leukemia associated with duplication of oncogenic KRAS due to acquired uniparental disomy. J Pediatr 2013; 162: 1285–1288.

    Article  CAS  Google Scholar 

  13. Chang YI, Damnernsawad A, Allen LK, Yang D, Ranheim EA, Young KH et al. Evaluation of allelic strength of human TET2 mutations and cooperation between Tet2 knockdown and oncogenic Nras mutation. Br J Haematol 2014; 166: 461–465.

    Article  CAS  Google Scholar 

  14. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010; 363: 2424–2433.

    Article  CAS  Google Scholar 

  15. Li KK, Luo LF, Shen Y, Xu J, Chen Z, Chen SJ . DNA methyltransferases in hematologic malignancies. Semin Hematol 2013; 50: 48–60.

    Article  CAS  Google Scholar 

  16. Russler-Germain DA, Spencer DH, Young MA, Lamprecht TL, Miller CA, Fulton R et al. The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers. Cancer Cell 2014; 25: 442–454.

    Article  CAS  Google Scholar 

  17. Kim SJ, Zhao H, Hardikar S, Singh AK, Goodell MA, Chen T . A DNMT3A mutation common in AML exhibits dominant-negative effects in murine ES cells. Blood 2013; 122: 4086–4089.

    Article  CAS  Google Scholar 

  18. Challen GA, Sun D, Jeong M, Luo M, Jelinek J, Berg JS et al. Dnmt3a is essential for hematopoietic stem cell differentiation. Nat Genet 2012; 44: 23–31.

    Article  CAS  Google Scholar 

  19. Mayle A, Yang L, Rodriguez B, Zhou T, Chang E, Curry CV et al. Dnmt3a loss predisposes murine hematopoietic stem cells to malignant transformation. Blood 2014; 125: 629–638.

    Article  Google Scholar 

  20. Gao Q, Steine EJ, Barrasa MI, Hockemeyer D, Pawlak M, Fu D et al. Deletion of the de novo DNA methyltransferase Dnmt3a promotes lung tumor progression. Proc Natl Acad Sci USA 2011; 108: 18061–18066.

    Article  CAS  Google Scholar 

  21. Network TCGAR. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368: 2059–2074.

    Article  Google Scholar 

  22. Nguyen S, Meletis K, Fu D, Jhaveri S, Jaenisch R . Ablation of de novo DNA methyltransferase Dnmt3a in the nervous system leads to neuromuscular defects and shortened lifespan. Dev Dyn 2007; 236: 1663–1676.

    Article  CAS  Google Scholar 

  23. Kong G, Wunderlich M, Yang D, Ranheim EA, Young KH, Wang J et al. Combined MEK and JAK inhibition abrogates murine myeloproliferative neoplasm. J Clin Invest 2014; 124: 2762–2773.

    Article  CAS  Google Scholar 

  24. Kuhn R, Schwenk F, Aguet M, Rajewsky K . Inducible gene targeting in mice. Science 1995; 269: 1427–1429.

    Article  CAS  Google Scholar 

  25. Peters SL, Hlady RA, Opavsky J, Klinkebiel D, Pirruccello SJ, Talmon GA et al. Tumor suppressor functions of Dnmt3a and Dnmt3b in the prevention of malignant mouse lymphopoiesis. Leukemia 2014; 28: 1138–1142.

    Article  CAS  Google Scholar 

  26. Sabnis AJ, Cheung LS, Dail M, Kang HC, Santaguida M, Hermiston ML et al. Oncogenic Kras initiates leukemia in hematopoietic stem cells. PLoS Biol 2009; 7: e59.

    Article  Google Scholar 

  27. Celik H, Mallaney C, Kothari A, Ostrander EL, Eultgen E, Martens A et al. Enforced differentiation of Dnmt3a-null bone marrow leads to failure with c-Kit mutations driving leukemic transformation. Blood 2014; 125: 619–628.

    Article  Google Scholar 

  28. Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 2014; 506: 328–333.

    Article  CAS  Google Scholar 

  29. Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 2014; 20: 1472–1478.

    Article  CAS  Google Scholar 

  30. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 2014; 371: 2488–2498.

    Article  Google Scholar 

  31. Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 2014; 371: 2477–2487.

    Article  Google Scholar 

  32. Wang J, Kong G, Liu Y, Du J, Chang Y-I, Zhang X et al. Nras G12D/+ promotes leukemogenesis by aberrantly regulating haematopoietic stem cell functions. Blood 2013; 121: 5203–5207.

    Article  CAS  Google Scholar 

  33. Parikh C, Subrahmanyam R, Ren R . Oncogenic NRAS rapidly and efficiently induces CMML- and AML-like diseases in mice. Blood 2006; 108: 2349–2357.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Qiang Chang for providing the Dnmt3a conditional knockout mice. We thank the University of Wisconsin Carbone Comprehensive Cancer Center (UWCCC) for use of its Shared Services to complete this research. This work was supported by R01 grants R01CA152108 and R01HL113066, and a Scholar Award from the Leukemia & Lymphoma Society to JZ. Y-IC was supported by the Ministry of Science and Technology (MOST 103-2320-B-010-047) and a grant from Ministry of Education, Aim for the Top University Plan. This work was also supported in part by NIH/NCI P30 CA014520–UW Comprehensive Cancer Center Support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Zhang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, YI., You, X., Kong, G. et al. Loss of Dnmt3a and endogenous KrasG12D/+ cooperate to regulate hematopoietic stem and progenitor cell functions in leukemogenesis. Leukemia 29, 1847–1856 (2015). https://doi.org/10.1038/leu.2015.85

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.85

This article is cited by

Search

Quick links