Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

In vivo adhesion of malignant B cells to bone marrow microvasculature is regulated by α4β1 cytoplasmic-binding proteins

Abstract

Multiple myeloma (MM) and chronic lymphocytic leukemia (CLL) cells must attach to the bone marrow (BM) microvasculature before lodging in the BM microenvironment. Using intravital microscopy (IVM) of the BM calvariae we demonstrate that the α4β1 integrin is required for MM and CLL cell firm arrest onto the BM microvasculature, while endothelial P-selectin and E-selectin mediate cell rolling. Talin, kindlin-3 and ICAP-1 are β1-integrin-binding partners that regulate β1-mediated cell adhesion. We show that talin and kindlin-3 cooperatively stimulate high affinity and strength of α4β1-dependent MM and CLL cell attachment, whereas ICAP-1 negatively regulates this adhesion. A functional connection between talin/kindlin-3 and Rac1 was found to be required for MM cell attachment mediated by α4β1. Importantly, IVM analyses with talin- and kindlin-3-silenced MM cells indicate that these proteins are needed for cell arrest on the BM microvasculature. Instead, MM cell arrest is repressed by ICAP-1. Moreover, MM cells silenced for talin and kindlin-3, and cultured on α4β1 ligands showed higher susceptibility to bortezomib-mediated cell apoptosis. Our results highlight the requirement of α4β1 and selectins for the in vivo attachment of MM and CLL cells to the BM microvasculature, and indicate that talin, kindlin-3 and ICAP-1 differentially control physiological adhesion by regulating α4β1 activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Anderson KC, Carrasco RD . Pathogenesis of myeloma. Annu Rev Pathol 2011; 6: 249–274.

    Article  CAS  Google Scholar 

  2. Kuehl WM, Bergsagel PL . Molecular pathogenesis of multiple myeloma and its premalignant precursor. J Clin Invest 2012; 122: 3456–3463.

    Article  CAS  Google Scholar 

  3. Chiorazzi N, Rai KR, Ferrarini M . Chronic lymphocytic leukemia. N Engl J Med 2005; 352: 804–815.

    Article  CAS  Google Scholar 

  4. Morgan GJ, Walker BA, Davies FE . The genetic architecture of multiple myeloma. Nat Rev Cancer 2012; 12: 335–348.

    Article  CAS  Google Scholar 

  5. Damiano JS, Cress AE, Hazlehurst LA, Shtil AA, Dalton WS . Cell adhesion mediated drug resistance (CAM-DR): role of integrins and resistance to apoptosis in human myeloma cell lines. Blood 1999; 93: 1658–1667.

    CAS  Google Scholar 

  6. Noborio-Hatano K, Kikuchi J, Takatoku M, Shimizu R, Wada T, Ueda M et al. Bortezomib overcomes cell-adhesion-mediated drug resistance through downregulation of VLA-4 expression in multiple myeloma. Oncogene 2009; 28: 231–242.

    Article  CAS  Google Scholar 

  7. Nowakowski GS, Witzig TE, Dingli D, Tracz MJ, Gertz MA, Lacy MQ et al. Circulating plasma cells detected by flow cytometry as a predictor of survival in 302 patients with newly diagnosed multiple myeloma. Blood 2005; 106: 2276–2279.

    Article  CAS  Google Scholar 

  8. Ghobrial IM . Myeloma as a model for the process of metastasis: implications for therapy. Blood 2012; 120: 20–30.

    Article  CAS  Google Scholar 

  9. Azab AK, Quang P, Azab F, Pitsillides C, Thompson B, Chonghaile T et al. P-selectin glycoprotein ligand regulates the interaction of multiple myeloma cells with the bone marrow microenvironment. Blood 2012; 119: 1468–1478.

    Article  CAS  Google Scholar 

  10. Uchiyama H, Barut BA, Chauhan D, Cannistra SA, Anderson KC . Characterization of adhesion molecules on human myeloma cell lines. Blood 1992; 80: 2306–2314.

    CAS  Google Scholar 

  11. Lokhorst HM, Lamme T, de Smet M, Klein S, de Weger RA, van Oers R et al. Primary tumor cells of myeloma patients induce interleukin-6 secretion in long-term bone marrow cultures. Blood 1994; 84: 2269–2277.

    CAS  Google Scholar 

  12. Sanz-Rodriguez F, Ruiz-Velasco N, Pascual-Salcedo D, Teixido J . Characterization of VLA-4-dependent myeloma cell adhesion to fibronectin and VCAM-1. Br J Haematol 1999; 107: 825–834.

    Article  CAS  Google Scholar 

  13. Sanz-Rodriguez F, Hidalgo A, Teixido J . Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin-mediated multiple myeloma cell adhesion to CS-1/fibronectin and VCAM-1. Blood 2001; 97: 346–351.

    Article  CAS  Google Scholar 

  14. Hideshima T, Chauhan D, Schlossman R, Richardson P, Anderson KC . The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene 2001; 20: 4519–4527.

    Article  CAS  Google Scholar 

  15. Till KJ, Spiller DG, Harris RJ, Chen H, Zuzel M, Cawley JC . CLL, but not normal, B cells are dependent on autocrine VEGF and alpha4beta1 integrin for chemokine-induced motility on and through endothelium. Blood 2005; 105: 4813–4819.

    Article  CAS  Google Scholar 

  16. Redondo-Munoz J, Escobar-Diaz E, Samaniego R, Terol MJ, Garcia-Marco JA, Garcia-Pardo A . MMP-9 in B-cell chronic lymphocytic leukemia is up-regulated by alpha4beta1 integrin or CXCR4 engagement via distinct signaling pathways, localizes to podosomes, and is involved in cell invasion and migration. Blood 2006; 108: 3143–3151.

    Article  CAS  Google Scholar 

  17. Hartmann TN, Grabovsky V, Wang W, Desch P, Rubenzer G, Wollner S et al. Circulating B-cell chronic lymphocytic leukemia cells display impaired migration to lymph nodes and bone marrow. Cancer Res 2009; 69: 3121–3130.

    Article  CAS  Google Scholar 

  18. Brachtl G, Sahakyan K, Denk U, Girbl T, Alinger B, Hofbauer SW et al. Differential bone marrow homing capacity of VLA-4 and CD38 high expressing chronic lymphocytic leukemia cells. PLoS One 2011; 6: e23758.

    Article  CAS  Google Scholar 

  19. Binsky I, Lantner F, Grabovsky V, Harpaz N, Shvidel L, Berrebi A et al. TAp63 regulates VLA-4 expression and chronic lymphocytic leukemia cell migration to the bone marrow in a CD74-dependent manner. J Immunol 2010; 184: 4761–4769.

    Article  CAS  Google Scholar 

  20. Bailon E, Ugarte-Berzal E, Amigo-Jimenez I, Van den Steen P, Opdenakker G, Garcia-Marco JA et al. Overexpression of progelatinase B/proMMP-9 affects migration regulatory pathways and impairs chronic lymphocytic leukemia cell homing to bone marrow and spleen. J Leukoc Biol 2014; 96: 185–199.

    Article  Google Scholar 

  21. Till KJ, Lin K, Zuzel M, Cawley JC . The chemokine receptor CCR7 and alpha4 integrin are important for migration of chronic lymphocytic leukemia cells into lymph nodes. Blood 2002; 99: 2977–2984.

    Article  CAS  Google Scholar 

  22. Bulian P, Shanafelt TD, Fegan C, Zucchetto A, Cro L, Nuckel H et al. CD49d is the strongest flow cytometry-based predictor of overall survival in chronic lymphocytic leukemia. J Clin Oncol 2014; 32: 897–904.

    Article  Google Scholar 

  23. Till KJ, Harris RJ, Linford A, Spiller DG, Zuzel M, Cawley JC . Cell motility in chronic lymphocytic leukemia: defective Rap1 and alphaLbeta2 activation by chemokine. Cancer Res 2008; 68: 8429–8436.

    Article  CAS  Google Scholar 

  24. Montresor A, Bolomini-Vittori M, Simon SI, Rigo A, Vinante F, Laudanna C . Comparative analysis of normal versus CLL B-lymphocytes reveals patient-specific variability in signaling mechanisms controlling LFA-1 activation by chemokines. Cancer Res 2009; 69: 9281–9290.

    Article  CAS  Google Scholar 

  25. Pye DS, Rubio I, Pusch R, Lin K, Pettitt AR, Till KJ . Chemokine unresponsiveness of chronic lymphocytic leukemia cells results from impaired endosomal recycling of Rap1 and is associated with a distinctive type of immunological anergy. J Immunol 2013; 191: 1496–1504.

    Article  CAS  Google Scholar 

  26. Redondo-Munoz J, Ugarte-Berzal E, Terol MJ, Van den Steen PE, Hernandez del Cerro M, Roderfeld M et al. Matrix metalloproteinase-9 promotes chronic lymphocytic leukemia b cell survival through its hemopexin domain. Cancer Cell 2010; 17: 160–172.

    Article  CAS  Google Scholar 

  27. Ten Hacken E, Burger JA . Microenvironment dependency in Chronic Lymphocytic Leukemia: The basis for new targeted therapies. Pharmacol Ther 2014; 144: 338–348.

    Article  CAS  Google Scholar 

  28. Ley K, Laudanna C, Cybulsky MI, Nourshargh S . Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 2007; 7: 678–689.

    Article  CAS  Google Scholar 

  29. Garcia-Bernal D, Redondo-Munoz J, Dios-Esponera A, Chevre R, Bailon E, Garayoa M et al. Sphingosine-1-phosphate activates chemokine-promoted myeloma cell adhesion and migration involving alpha4beta1 integrin function. J Pathol 2013; 229: 36–48.

    Article  CAS  Google Scholar 

  30. Azab AK, Azab F, Blotta S, Pitsillides CM, Thompson B, Runnels JM et al. RhoA and Rac1 GTPases play major and differential roles in stromal cell-derived factor-1-induced cell adhesion and chemotaxis in multiple myeloma. Blood 2009; 114: 619–629.

    Article  CAS  Google Scholar 

  31. Kim C, Ye F, Ginsberg MH . Regulation of integrin activation. Annu Rev Cell Dev Biol 2011; 27: 321–345.

    Article  CAS  Google Scholar 

  32. Moser M, Legate KR, Zent R, Fassler R . The tail of integrins, talin, and kindlins. Science 2009; 324: 895–899.

    Article  CAS  Google Scholar 

  33. Calderwood DA, Campbell ID, Critchley DR . Talins and kindlins: partners in integrin-mediated adhesion. Nat Rev Mol Cell Biol 2013; 14: 503–517.

    Article  CAS  Google Scholar 

  34. Lefort CT, Rossaint J, Moser M, Petrich BG, Zarbock A, Monkley SJ et al. Distinct roles for talin-1 and kindlin-3 in LFA-1 extension and affinity regulation. Blood 2012; 119: 4275–4282.

    Article  CAS  Google Scholar 

  35. Manevich E, Grabovsky V, Feigelson SW, Alon R . Talin 1 and paxillin facilitate distinct steps in rapid VLA-4-mediated adhesion strengthening to vascular cell adhesion molecule 1. J Biol Chem 2007; 282: 25338–25348.

    Article  CAS  Google Scholar 

  36. Garcia-Bernal D, Parmo-Cabanas M, Dios-Esponera A, Samaniego R, Hernan PdlOD, Teixido J . Chemokine-induced Zap70 kinase-mediated dissociation of the Vav1-talin complex activates alpha4beta1 integrin for T cell adhesion. Immunity 2009; 31: 953–964.

    Article  CAS  Google Scholar 

  37. Manevich-Mendelson E, Grabovsky V, Feigelson SW, Cinamon G, Gore Y, Goverse G et al. Talin1 is required for integrin-dependent B lymphocyte homing to lymph nodes and the bone marrow but not for follicular B-cell maturation in the spleen. Blood 2010; 116: 5907–5918.

    Article  CAS  Google Scholar 

  38. Ebisuno Y, Katagiri K, Katakai T, Ueda Y, Nemoto T, Inada H et al. Rap1 controls lymphocyte adhesion cascade and interstitial migration within lymph nodes in RAPL-dependent and -independent manners. Blood 2010; 115: 804–814.

    Article  CAS  Google Scholar 

  39. Moser M, Bauer M, Schmid S, Ruppert R, Schmidt S, Sixt M et al. Kindlin-3 is required for beta2 integrin-mediated leukocyte adhesion to endothelial cells. Nat Med 2009; 15: 300–305.

    Article  CAS  Google Scholar 

  40. Manevich-Mendelson E, Feigelson SW, Pasvolsky R, Aker M, Grabovsky V, Shulman Z et al. Loss of Kindlin-3 in LAD-III eliminates LFA-1 but not VLA-4 adhesiveness developed under shear flow conditions. Blood 2009; 114: 2344–2353.

    Article  CAS  Google Scholar 

  41. Chang DD, Wong C, Smith H, Liu J . ICAP-1, a novel beta1 integrin cytoplasmic domain-associated protein, binds to a conserved and functionally important NPXY sequence motif of beta1 integrin. J Cell Biol 1997; 138: 1149–1157.

    Article  CAS  Google Scholar 

  42. Zhang XA, Hemler ME . Interaction of the integrin beta1 cytoplasmic domain with ICAP-1 protein. J Biol Chem 1999; 274: 11–19.

    Article  CAS  Google Scholar 

  43. Degani S, Balzac F, Brancaccio M, Guazzone S, Retta SF, Silengo L et al. The integrin cytoplasmic domain-associated protein ICAP-1 binds and regulates Rho family GTPases during cell spreading. J Cell Biol 2002; 156: 377–387.

    Article  CAS  Google Scholar 

  44. Bouvard D, Millon-Fremillon A, Dupe-Manet S, Block MR, Albiges-Rizo C . Unraveling ICAP-1 function: toward a new direction? Eur J Cell Biol 2006; 85: 275–282.

    Article  CAS  Google Scholar 

  45. Bouvard D, Aszodi A, Kostka G, Block MR, Albiges-Rizo C, Fassler R . Defective osteoblast function in ICAP-1-deficient mice. Development 2007; 134: 2615–2625.

    Article  CAS  Google Scholar 

  46. Stacchini A, Aragno M, Vallario A, Alfarano A, Circosta P, Gottardi D et al. MEC1 and MEC2: two new cell lines derived from B-chronic lymphocytic leukaemia in prolymphocytoid transformation. Leuk Res 1999; 23: 127–136.

    Article  CAS  Google Scholar 

  47. Garcia-Bernal D, Wright N, Sotillo-Mallo E, Nombela-Arrieta C, Stein JV, Bustelo XR et al. Vav1 and Rac Control Chemokine-promoted T Lymphocyte Adhesion Mediated by the Integrin {alpha}4{beta}1. Mol Biol Cell 2005; 16: 3223–3235.

    Article  CAS  Google Scholar 

  48. Garcia-Bernal D, Sotillo-Mallo E, Nombela-Arrieta C, Samaniego R, Fukui Y, Stein JV et al. DOCK2 is required for chemokine-promoted human T lymphocyte adhesion under shear stress mediated by the integrin alpha4beta1. J Immunol 2006; 177: 5215–5225.

    Article  CAS  Google Scholar 

  49. Parmo-Cabanas M, Bartolome RA, Wright N, Hidalgo A, Drager AM, Teixido J . Integrin alpha4beta1 involvement in stromal cell-derived factor-1alpha-promoted myeloma cell transendothelial migration and adhesion: role of cAMP and the actin cytoskeleton in adhesion. Exp Cell Res 2004; 294: 571–580.

    Article  CAS  Google Scholar 

  50. Hidalgo A, Weiss LA, Frenette PS . Functional selectin ligands mediating human CD34(+) cell interactions with bone marrow endothelium are enhanced postnatally. J Clin Invest 2002; 110: 559–569.

    Article  CAS  Google Scholar 

  51. Mazo IB, Gutierrez-Ramos JC, Frenette PS, Hynes RO, Wagner DD, von Andrian UH . Hematopoietic progenitor cell rolling in bone marrow microvessels: parallel contributions by endothelial selectins and vascular cell adhesion molecule 1. J Exp Med 1998; 188: 465–474.

    Article  CAS  Google Scholar 

  52. Luque A, Gomez M, Puzon W, Takada Y, Sanchez-Madrid F, Cabanas C . Activated conformations of very late activation integrins detected by a group of antibodies (HUTS) specific for a novel regulatory region (355-425) of the common beta 1 chain. J Biol Chem 1996; 271: 11067–11075.

    Article  CAS  Google Scholar 

  53. Uchiyama H, Barut BA, Mohrbacher AF, Chauhan D, Anderson KC . Adhesion of human myeloma-derived cell lines to bone marrow stromal cells stimulates interleukin-6 secretion. Blood 1993; 82: 3712–3720.

    CAS  Google Scholar 

  54. Mori Y, Shimizu N, Dallas M, Niewolna M, Story B, Williams PJ et al. Anti-alpha4 integrin antibody suppresses the development of multiple myeloma and associated osteoclastic osteolysis. Blood 2004; 104: 2149–2154.

    Article  CAS  Google Scholar 

  55. Olson DL, Burkly LC, Leone DR, Dolinski BM, Lobb RR . Anti-alpha4 integrin monoclonal antibody inhibits multiple myeloma growth in a murine model. Mol Cancer Ther 2005; 4: 91–99.

    CAS  Google Scholar 

  56. Katayama Y, Hidalgo A, Furie BC, Vestweber D, Furie B, Frenette PS . PSGL-1 participates in E-selectin-mediated progenitor homing to bone marrow: evidence for cooperation between E-selectin ligands and alpha4 integrin. Blood 2003; 102: 2060–2067.

    Article  CAS  Google Scholar 

  57. Alsayed Y, Ngo H, Runnels J, Leleu X, Singha UK, Pitsillides CM et al. Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood 2007; 109: 2708–2717.

    CAS  Google Scholar 

  58. Davids MS, Burger JA . Cell Trafficking in Chronic Lymphocytic Leukemia. Open J Hematol 2012; 3: 1–13.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the multiple myeloma and chronic lymphocytic leukemia patients who donated samples for this research. We thank Dr Pedro Lastres for his help in flow cytometry. We also thank JM Adrover for movie editing. This work was supported by the following grants from the Ministerio de Economía y Competitividad (Spain): SAF2011-24022 to JT; SAF2012-31613 to AG-P; SAF2012-31142 and SAF2013-49662-EXP to AH; PI13/01454 to PS-M; RD12/0036/0061 to JT and AG-P; RD12/0036/0058 to NCG. The work was also funded by grant P2010/BMD-2314 from the Comunidad de Madrid to AG-P, JT, PS-M and AH, and partially supported by a CRIS foundation grant to fight cancer to JM-L. NCG is also funded by a grant from the Asociación Española Contra el Cáncer (GCB120981SAN), and from the Gerencia Regional de Salud, Junta de Castilla y León (GRS-702/A/11). The CNIC is supported by the Pro-CNIC Foundation.

Author contributions

MM-M, ML and NA-M performed experiments and analyzed data. SS-M, SIV and NA-S performed some experiments, analyzed data and prepared valuable reagents. NG, RM, JM-L, IB and JAG-M collected and provided primary cells from MM and CLL patients. JT, AG-P, AH and PS-M designed the research and wrote the manuscript. All authors reviewed and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Teixidó.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Moreno, M., Leiva, M., Aguilera-Montilla, N. et al. In vivo adhesion of malignant B cells to bone marrow microvasculature is regulated by α4β1 cytoplasmic-binding proteins. Leukemia 30, 861–872 (2016). https://doi.org/10.1038/leu.2015.332

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.332

This article is cited by

Search

Quick links