Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic lymphocytic leukemia

The pan phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor SAR245409 (voxtalisib/XL765) blocks survival, adhesion and proliferation of primary chronic lymphocytic leukemia cells

A Corrigendum to this article was published on 07 September 2016

Abstract

The phosphoinositide 3-kinases (PI3Ks) are critical components of the B-cell receptor (BCR) pathway and have an important role in the pathobiology of chronic lymphocytic leukemia (CLL). Inhibitors of PI3Kδ block BCR-mediated cross-talk between CLL cells and the lymph node microenvironment and provide significant clinical benefit to CLL patients. However, the PI3Kδ inhibitors applied thus far have limited direct impact on leukemia cell survival and thus are unlikely to eradicate the disease. The use of inhibitors of multiple isoforms of PI3K might lead to deeper remissions. Here we demonstrate that the pan-PI3K/mammalian target of rapamycin inhibitor SAR245409 (voxtalisib/XL765) was more pro-apoptotic to CLL cells—irrespective of their ATM/p53 status—than PI3Kα or PI3Kδ isoform selective inhibitors. Furthermore, SAR245409 blocked CLL survival, adhesion and proliferation. Moreover, SAR245409 was a more potent inhibitor of T-cell-mediated production of cytokines, which support CLL survival. Taken together, our in vitro data provide a rationale for the evaluation of a pan-PI3K inhibitor in CLL patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chiorazzi N, Rai KR, Ferrarini M . Chronic lymphocytic leukemia. N Engl J Med 2005; 352: 804–815.

    Article  CAS  Google Scholar 

  2. Panayiotidis P, Jones D, Ganeshaguru K, Foroni L, Hoffbrand AV . Human bone marrow stromal cells prevent apoptosis and support the survival of chronic lymphocytic leukaemia cells in vitro. Br J Haematol 1996; 92: 97–103.

    Article  CAS  Google Scholar 

  3. Burger JA, Tsukada N, Burger M, Zvaifler NJ, Dell'Aquila M, Kipps TJ . Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood 2000; 96: 2655–2663.

    CAS  Google Scholar 

  4. Ghia P, Strola G, Granziero L, Geuna M, Guida G, Sallusto F et al. Chronic lymphocytic leukemia B cells are endowed with the capacity to attract CD4+, CD40L+ T cells by producing CCL22. Eur J Immunol 2002; 32: 1403–1413.

    Article  CAS  Google Scholar 

  5. Engelman JA, Luo J, Cantley LC . The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 2006; 7: 606–619.

    Article  CAS  Google Scholar 

  6. Chantry D, Vojtek A, Kashishian A, Holtzman DA, Wood C, Gray PW et al. p110delta, a novel phosphatidylinositol 3-kinase catalytic subunit that associates with p85 and is expressed predominantly in leukocytes. J Biol Chem 1997; 272: 19236–19241.

    Article  CAS  Google Scholar 

  7. Reif K, Okkenhaug K, Sasaki T, Penninger JM, Vanhaesebroeck B, Cyster JG . Cutting edge: differential roles for phosphoinositide 3-kinases, p110gamma and p110delta, in lymphocyte chemotaxis and homing. J Immunol 2004; 173: 2236–2240.

    Article  CAS  Google Scholar 

  8. Beer-Hammer S, Zebedin E, von Holleben M, Alferink J, Reis B, Dresing P et al. The catalytic PI3K isoforms p110gamma and p110delta contribute to B cell development and maintenance, transformation, and proliferation. J Leukoc Biol 2010; 87: 1083–1095.

    Article  CAS  Google Scholar 

  9. Herman SE, Gordon AL, Wagner AJ, Heerema NA, Zhao W, Flynn JM et al. Phosphatidylinositol 3-kinase-delta inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood 2010; 116: 2078–2088.

    Article  CAS  Google Scholar 

  10. Ringshausen I, Schneller F, Bogner C, Hipp S, Duyster J, Peschel C et al. Constitutively activated phosphatidylinositol-3 kinase (PI-3K) is involved in the defect of apoptosis in B-CLL: association with protein kinase Cdelta. Blood 2002; 100: 3741–3748.

    Article  CAS  Google Scholar 

  11. Srinivasan L, Sasaki Y, Calado DP, Zhang B, Paik JH, DePinho RA et al. PI3 kinase signals BCR-dependent mature B cell survival. Cell 2009; 139: 573–586.

    Article  CAS  Google Scholar 

  12. Clayton E, Bardi G, Bell SE, Chantry D, Downes CP, Gray A et al. A crucial role for the p110delta subunit of phosphatidylinositol 3-kinase in B cell development and activation. J Exp Med 2002; 196: 753–763.

    Article  CAS  Google Scholar 

  13. Fiorcari S, Brown WS, McIntyre BW, Estrov Z, Maffei R, O'Brien S et al. The PI3-kinase delta inhibitor idelalisib (GS-1101) targets integrin-mediated adhesion of chronic lymphocytic leukemia (CLL) cell to endothelial and marrow stromal cells. PLoS One 2013; 8: e83830.

    Article  Google Scholar 

  14. Hoellenriegel J, Meadows SA, Sivina M, Wierda WG, Kantarjian H, Keating MJ et al. The phosphoinositide 3'-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood 2011; 118: 3603–3612.

    Article  CAS  Google Scholar 

  15. de Rooij MF, Kuil A, Kater AP, Kersten MJ, Pals ST, Spaargaren M . Ibrutinib and idelalisib synergistically target BCR-controlled adhesion in MCL and CLL: a rationale for combination therapy. Blood 2015; 125: 2306–2309.

    Article  Google Scholar 

  16. Woyach JA, Furman RR, Liu TM, Ozer HG, Zapatka M, Ruppert AS et al. Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib. N Engl J Med 2014; 370: 2286–2294.

    Article  Google Scholar 

  17. Juric D, Castel P, Griffith M, Griffith OL, Won HH, Ellis H et al. Convergent loss of PTEN leads to clinical resistance to a PI(3)Kalpha inhibitor. Nature 2015; 518: 240–244.

    Article  CAS  Google Scholar 

  18. Thorpe LM, Yuzugullu H, Zhao JJ . PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer 2015; 15: 7–24.

    Article  CAS  Google Scholar 

  19. Ramadani F, Bolland DJ, Garcon F, Emery JL, Vanhaesebroeck B, Corcoran AE et al. The PI3K isoforms p110alpha and p110delta are essential for pre-B cell receptor signaling and B cell development. Sci Signal 2010; 3: ra60.

    Article  Google Scholar 

  20. Psyrri A, Papageorgiou S, Liakata E, Scorilas A, Rontogianni D, Kontos CK et al. Phosphatidylinositol 3'-kinase catalytic subunit alpha gene amplification contributes to the pathogenesis of mantle cell lymphoma. Clin Cancer Res 2009; 15: 5724–5732.

    Article  CAS  Google Scholar 

  21. Brown JR, Hanna M, Tesar B, Werner L, Pochet N, Asara JM et al. Integrative genomic analysis implicates gain of PIK3CA at 3q26 and MYC at 8q24 in chronic lymphocytic leukemia. Clin Cancer Res 2012; 18: 3791–3802.

    Article  CAS  Google Scholar 

  22. Iyengar S, Clear A, Bodor C, Maharaj L, Lee A, Calaminici M et al. P110alpha-mediated constitutive PI3K signaling limits the efficacy of p110delta-selective inhibition in mantle cell lymphoma, particularly with multiple relapse. Blood 2013; 121: 2274–2284.

    Article  CAS  Google Scholar 

  23. IPI-145 shows promise in CLL patients. Cancer Discov 2014; 4: 136.

  24. Dreyling M, Cunningham D, Bouabdallah K, Assouline S, Van den Neste E, Vitolo U et al. Phase 2A study of Copanlisib, a novel PI3K inhibitor, in patients with indolent lymphoma. ASH Annu Meet Abstr 2014; 623: 1701.

    Google Scholar 

  25. Daver N, Kantarjian H, DeBose L, Jabbour E, Borthakur G, Pemmaraju N et al. Buparlisib, a Pi3k inhibitor, demonstrates acceptable tolerability and preliminary activity in a phase I/II trial of patients with advanced leukemias. Haematologica 2014; 99: 36–36.

    Google Scholar 

  26. Papadopoulos KP, Egile C, Ruiz-Soto R, Jiang J, Shi W, Bentzien F et al. Efficacy, safety, pharmacokinetics and pharmacodynamics of SAR245409 (voxtalisib, XL765), an orally administered phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor: a phase 1 expansion cohort in patients with relapsed or refractory lymphoma. Leuk Lymphoma 2014; 56: 1763–1770.

    Article  Google Scholar 

  27. Yu P, Laird AD, Du X, Wu J, Won KA, Yamaguchi K et al. Characterization of the activity of the PI3K/mTOR inhibitor XL765 (SAR245409) in tumor models with diverse genetic alterations affecting the PI3K pathway. Mol Cancer Ther 2014; 13: 1078–1091.

    Article  CAS  Google Scholar 

  28. Brown JR, Davids MS, Rodon J, Abrisqueta P, Kasar SN, Lager J et al. Phase I trial of the pan-PI3K inhibitor pilaralisib (SAR245408/XL147) in patients with chronic lymphocytic leukemia (CLL) or relapsed/refractory lymphoma. Clin Cancer Res 2015; 21: 3160–3169.

    Article  CAS  Google Scholar 

  29. Fritsch C, Huang A, Chatenay-Rivauday C, Schnell C, Reddy A, Liu M et al. Characterization of the novel and specific PI3Kalpha inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials. Mol Cancer Ther 2014; 13: 1117–1129.

    Article  CAS  Google Scholar 

  30. Hallaert DY, Jaspers A, van Noesel CJ, van Oers MH, Kater AP, Eldering E . c-Abl kinase inhibitors overcome CD40-mediated drug resistance in CLL: implications for therapeutic targeting of chemoresistant niches. Blood 2008; 112: 5141–5149.

    Article  CAS  Google Scholar 

  31. Te Raa GD, Derks IA, Navrkalova V, Skowronska A, Moerland PD, van Laar J et al. The impact of SF3B1 mutations in CLL on the DNA-damage response. Leukemia 2015; 29: 1133–1142.

    Article  CAS  Google Scholar 

  32. Austen B, Powell JE, Alvi A, Edwards I, Hooper L, Starczynski J et al. Mutations in the ATM gene lead to impaired overall and treatment-free survival that is independent of IGVH mutation status in patients with B-CLL. Blood 2005; 106: 3175–3182.

    Article  CAS  Google Scholar 

  33. Skowronska A, Parker A, Ahmed G, Oldreive C, Davis Z, Richards S et al. Biallelic ATM inactivation significantly reduces survival in patients treated on the United Kingdom Leukemia Research Fund Chronic Lymphocytic Leukemia 4 trial. J Clin Oncol 2012; 30: 4524–4532.

    Article  CAS  Google Scholar 

  34. de Rooij MF, Kuil A, Geest CR, Eldering E, Chang BY, Buggy JJ et al. The clinically active BTK inhibitor PCI-32765 targets B-cell receptor- and chemokine-controlled adhesion and migration in chronic lymphocytic leukemia. Blood 2012; 119: 2590–2594.

    Article  CAS  Google Scholar 

  35. Pascutti MF, Jak M, Tromp JM, Derks IA, Remmerswaal EB, Thijssen R et al. IL-21 and CD40L signals from autologous T cells can induce antigen-independent proliferation of CLL cells. Blood 2013; 122: 3010–3019.

    Article  CAS  Google Scholar 

  36. Tonino SH, van Laar J, van Oers MH, Wang JY, Eldering E, Kater AP . ROS-mediated upregulation of Noxa overcomes chemoresistance in chronic lymphocytic leukemia. Oncogene 2011; 30: 701–713.

    Article  CAS  Google Scholar 

  37. Zhou Y, Hileman EO, Plunkett W, Keating MJ, Huang P . Free radical stress in chronic lymphocytic leukemia cells and its role in cellular sensitivity to ROS-generating anticancer agents. Blood 2003; 101: 4098–4104.

    Article  CAS  Google Scholar 

  38. Trachootham D, Zhang H, Zhang W, Feng L, Du M, Zhou Y et al. Effective elimination of fludarabine-resistant CLL cells by PEITC through a redox-mediated mechanism. Blood 2008; 112: 1912–1922.

    Article  CAS  Google Scholar 

  39. Guarini A, Chiaretti S, Tavolaro S, Maggio R, Peragine N, Citarella F et al. BCR ligation induced by IgM stimulation results in gene expression and functional changes only in IgV H unmutated chronic lymphocytic leukemia (CLL) cells. Blood 2008; 112: 782–792.

    Article  CAS  Google Scholar 

  40. Tromp JM, Tonino SH, Elias JA, Jaspers A, Luijks DM, Kater AP et al. Dichotomy in NF-kappaB signaling and chemoresistance in immunoglobulin variable heavy-chain-mutated versus unmutated CLL cells upon CD40/TLR9 triggering. Oncogene 2010; 29: 5071–5082.

    Article  CAS  Google Scholar 

  41. Kater AP, Evers LM, Remmerswaal EB, Jaspers A, Oosterwijk MF, van Lier RA et al. CD40 stimulation of B-cell chronic lymphocytic leukaemia cells enhances the anti-apoptotic profile, but also Bid expression and cells remain susceptible to autologous cytotoxic T-lymphocyte attack. Br J Haematol 2004; 127: 404–415.

    Article  CAS  Google Scholar 

  42. Smit LA, Hallaert DY, Spijker R, de Goeij B, Jaspers A, Kater AP et al. Differential Noxa/Mcl-1 balance in peripheral versus lymph node chronic lymphocytic leukemia cells correlates with survival capacity. Blood 2007; 109: 1660–1668.

    Article  CAS  Google Scholar 

  43. Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med 2014; 370: 997–1007.

    Article  CAS  Google Scholar 

  44. Brown JR, Byrd JC, Coutre SE, Benson DM, Flinn IW, Wagner-Johnston ND et al. Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110delta, for relapsed/refractory chronic lymphocytic leukemia. Blood 2014; 123: 3390–3397.

    Article  CAS  Google Scholar 

  45. Sharman JP CS, Furman RR, Cheson BD, Pagel JM, Hillmen P et al. Second interim analysis of a phase 3 study of idelalisib (ZYDELIG®) plus rituximab (R) for relapsed chronic lymphocytic leukemia (CLL): efficacy analysis in patient subpopulations with del(17p) and other adverse prognostic factors. ASH Annu Meet Abstr 2014; 642: 330.

    Google Scholar 

  46. Dong S, Guinn D, Dubovsky JA, Zhong Y, Lehman A, Kutok J et al. IPI-145 antagonizes intrinsic and extrinsic survival signals in chronic lymphocytic leukemia cells. Blood 2014; 124: 3583–3586.

    Article  CAS  Google Scholar 

  47. Gockeritz E, Kerwien S, Baumann M, Wigger M, Vondey V, Neumann L et al. Efficacy of phosphatidylinositol-3 kinase inhibitors with diverse isoform selectivity profiles for inhibiting the survival of chronic lymphocytic leukemia cells. Int J Cancer 2015; 137: 2234–2242.

    Article  Google Scholar 

  48. O'Brien S, Patel M, Kahl BS, Horwitz SM, Foss FM, Porcu P et al. Duvelisib (IPI-145), a PI3K-delta,gamma inhibitor, is clinically active in patients with relapsed/refractory chronic lymphocytic leukemia. ASH Annu Meet Abstr 2014; 642: 3334.

    Google Scholar 

  49. Balakrishnan K, Peluso M, Fu M, Rosin NY, Burger JA, Wierda WG et al. The phosphoinositide-3-kinase (PI3K)-delta and gamma inhibitor, IPI-145 (Duvelisib), overcomes signals from the PI3K/AKT/S6 pathway and promotes apoptosis in CLL. Leukemia 2015; 29: 1811–1822.

    Article  CAS  Google Scholar 

  50. Rosich L, Saborit-Villarroya I, Lopez-Guerra M, Xargay-Torrent S, Montraveta A, Aymerich M et al. The phosphatidylinositol-3-kinase inhibitor NVP-BKM120 overcomes resistance signals derived from microenvironment by regulating the Akt/FoxO3a/Bim axis in chronic lymphocytic leukemia cells. Haematologica 2013; 98: 1739–1747.

    Article  CAS  Google Scholar 

  51. Blunt MD, Carter MJ, Larrayoz M, Smith LD, Aguilar-Hernandez M, Cox KL et al. The PI3K/mTOR inhibitor PF-04691502 induces apoptosis and inhibits microenvironmental signaling in CLL and the Emu-TCL1 mouse model. Blood 2015; 125: 4032–4041.

    Article  CAS  Google Scholar 

  52. Ali K, Soond DR, Pineiro R, Hagemann T, Pearce W, Lim EL et al. Inactivation of PI(3)K p110delta breaks regulatory T-cell-mediated immune tolerance to cancer. Nature 2014; 510: 407–411.

    Article  CAS  Google Scholar 

  53. Beyer M, Kochanek M, Darabi K, Popov A, Jensen M, Endl E et al. Reduced frequencies and suppressive function of CD4+CD25hi regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine. Blood 2005; 106: 2018–2025.

    Article  CAS  Google Scholar 

  54. Jak M, Mous R, Remmerswaal EB, Spijker R, Jaspers A, Yague A et al. Enhanced formation and survival of CD4+ CD25hi Foxp3+ T-cells in chronic lymphocytic leukemia. Leuk Lymphoma 2009; 50: 788–801.

    Article  CAS  Google Scholar 

  55. Dasgupta A, Mahapatra M, Saxena R . Flow cytometric immunophenotyping of regulatory T cells in chronic lymphocytic leukemia: comparative assessment of various markers and use of novel antibody panel with CD127 as alternative to transcription factor FoxP3. Leuk Lymphoma 2013; 54: 778–789.

    Article  CAS  Google Scholar 

  56. Chaouchi N, Wallon C, Goujard C, Tertian G, Rudent A, Caput D et al. Interleukin-13 inhibits interleukin-2-induced proliferation and protects chronic lymphocytic leukemia B cells from in vitro apoptosis. Blood 1996; 87: 1022–1029.

    CAS  PubMed  Google Scholar 

  57. Podhorecka M, Dmoszynska A, Rolinski J . Intracellular IFN-gamma expression by CD3+/CD8+ cell subset in B-CLL patients correlates with stage of the disease. Eur J Haematol 2004; 73: 29–35.

    Article  CAS  Google Scholar 

  58. Zaki M, Douglas R, Patten N, Bachinsky M, Lamb R, Nowell P et al. Disruption of the IFN-gamma cytokine network in chronic lymphocytic leukemia contributes to resistance of leukemic B cells to apoptosis. Leuk Res 2000; 24: 611–621.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the CLL patients for their blood donations and Marjolein Spiering and Dieuwertje Luijks for database management and CLL cell phenotyping. APK is a recipient of a Dutch Cancer Society Clinical Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A P Kater.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thijssen, R., ter Burg, J., van Bochove, G. et al. The pan phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor SAR245409 (voxtalisib/XL765) blocks survival, adhesion and proliferation of primary chronic lymphocytic leukemia cells. Leukemia 30, 337–345 (2016). https://doi.org/10.1038/leu.2015.241

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.241

This article is cited by

Search

Quick links