Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myelodysplastic syndrome

Blockade of BCL-2 proteins efficiently induces apoptosis in progenitor cells of high-risk myelodysplastic syndromes patients

Abstract

Deregulated apoptosis is an identifying feature of myelodysplastic syndromes (MDS). Whereas apoptosis is increased in the bone marrow (BM) of low-risk MDS patients, progression to high-risk MDS correlates with an acquired resistance to apoptosis and an aberrant expression of BCL-2 proteins. To overcome the acquired apoptotic resistance in high-risk MDS, we investigated the induction of apoptosis by inhibition of pro-survival BCL-2 proteins using the BCL-2/-XL/-W inhibitor ABT-737 or the BCL-2-selective inhibitor ABT-199. We characterized a cohort of 124 primary human BM samples from MDS/secondary acute myeloid leukemia (sAML) patients and 57 healthy, age-matched controls. Inhibition of anti-apoptotic BCL-2 proteins was specifically toxic for BM cells from high-risk MDS and sAML patients, whereas low-risk MDS or healthy controls remained unaffected. Notably, ABT-737 or ABT-199 treatment was capable of targeting the MDS stem/progenitor compartment in high-risk MDS/sAML samples as shown by the reduction in CD34+ cells and the decreased colony-forming capacity. Elevated expression of MCL-1 conveyed resistance against both compounds. Protection by stromal cells only partially inhibited induction of apoptosis. Collectively, our data show that the apoptotic resistance observed in high-risk MDS/sAML cells can be overcome by the ABT-737 or ABT-199 treatment and implies that BH3 mimetics might delay disease progression in higher-risk MDS or sAML patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Tefferi A, Vardiman JW . Myelodysplastic syndromes. N Engl J Med 2009; 361: 1872–1885.

    Article  CAS  PubMed  Google Scholar 

  2. Corey SJ, Minden MD, Barber DL, Kantarjian H, Wang JC, Schimmer AD . Myelodysplastic syndromes: the complexity of stem-cell diseases. Nat Rev Cancer 2007; 7: 118–129.

    Article  CAS  PubMed  Google Scholar 

  3. Raza A, Galili N . The genetic basis of phenotypic heterogeneity in myelodysplastic syndromes. Nat Rev Cancer 2012; 12: 849–859.

    Article  CAS  PubMed  Google Scholar 

  4. Ma X, Does M, Raza A, Mayne ST . Myelodysplastic syndromes: incidence and survival in the United States. Cancer 2007; 109: 1536–1542.

    Article  PubMed  Google Scholar 

  5. Shetty V, Hussaini S, Broady-Robinson L, Allampallam K, Mundle S, Borok R et al. Intramedullary apoptosis of hematopoietic cells in myelodysplastic syndrome patients can be massive: apoptotic cells recovered from high-density fraction of bone marrow aspirates. Blood 2000; 96: 1388–1392.

    CAS  PubMed  Google Scholar 

  6. Raza A, Gezer S, Mundle S, Gao XZ, Alvi S, Borok R et al. Apoptosis in bone marrow biopsy samples involving stromal and hematopoietic cells in 50 patients with myelodysplastic syndromes. Blood 1995; 86: 268–276.

    CAS  PubMed  Google Scholar 

  7. Raza A, Alvi S, Broady-Robinson L, Showel M, Cartlidge J, Mundle SD et al. Cell cycle kinetic studies in 68 patients with myelodysplastic syndromes following intravenous iodo- and/or bromodeoxyuridine. Exp Hematol 1997; 25: 530–535.

    CAS  PubMed  Google Scholar 

  8. Parker JE, Mufti GJ . Ineffective haemopoiesis and apoptosis in myelodysplastic syndromes. Br J Haematol 1998; 101: 220–230.

    Article  CAS  PubMed  Google Scholar 

  9. Parker JE, Mufti GJ, Rasool F, Mijovic A, Devereux S, Pagliuca A . The role of apoptosis, proliferation, and the Bcl-2-related proteins in the myelodysplastic syndromes and acute myeloid leukemia secondary to MDS. Blood 2000; 96: 3932–3938.

    CAS  PubMed  Google Scholar 

  10. Albitar M, Manshouri T, Shen Y, Liu D, Beran M, Kantarjian HM et al. Myelodysplastic syndrome is not merely ‘preleukemia’. Blood 2002; 100: 791–798.

    Article  CAS  PubMed  Google Scholar 

  11. Bogdanovic AD, Trpinac DP, Jankovic GM, Bumbasirevic VZ, Obradovic M, Colovic MD . Incidence and role of apoptosis in myelodysplastic syndrome: morphological and ultrastructural assessment. Leukemia 1997; 11: 656–659.

    Article  CAS  PubMed  Google Scholar 

  12. Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 1997; 89: 2079–2088.

    CAS  PubMed  Google Scholar 

  13. Invernizzi R, Pecci A, Bellotti L, Ascari E . Expression of p53, bcl-2 and ras oncoproteins and apoptosis levels in acute leukaemias and myelodysplastic syndromes. Leuk Lymphoma 2001; 42: 481–489.

    Article  CAS  PubMed  Google Scholar 

  14. Strasser A, Cory S, Adams JM . Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO J 2011; 30: 3667–3683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Adams JM, Cory S . The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 2007; 26: 1324–1337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR . The BCL-2 family reunion. Mol Cell 2010; 37: 299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pop C, Salvesen GS . Human caspases: activation, specificity, and regulation. J Biol Chem 2009; 284: 21777–21781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Davids MS, Letai A . ABT-199: taking dead aim at BCL-2. Cancer Cell 2013; 23: 139–141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oltersdorf T, Elmore SW, Shoemaker AR, Armstrong RC, Augeri DJ, Belli BA et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 2005; 435: 677–681.

    Article  CAS  PubMed  Google Scholar 

  20. Letai A . BCL-2: found bound and drugged!. Trends Mol Med 2005; 11: 442–444.

    Article  CAS  PubMed  Google Scholar 

  21. Cragg MS, Harris C, Strasser A, Scott CL . Unleashing the power of inhibitors of oncogenic kinases through BH3 mimetics. Nat Rev Cancer 2009; 9: 321–326.

    Article  CAS  PubMed  Google Scholar 

  22. Khaw SL, Huang DC, Roberts AW . Overcoming blocks in apoptosis with BH3-mimetic therapy in haematological malignancies. Pathology 2011; 43: 525–535.

    Article  CAS  PubMed  Google Scholar 

  23. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 2013; 19: 202–208.

    Article  CAS  PubMed  Google Scholar 

  24. Roberts AW, Seymour JF, Brown JR, Wierda WG, Kipps TJ, Khaw SL et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: results of a phase I study of navitoclax in patients with relapsed or refractory disease. J Clin Oncol 2012; 30: 488–496.

    Article  CAS  PubMed  Google Scholar 

  25. Wilson WH, O'Connor OA, Czuczman MS, LaCasce AS, Gerecitano JF, Leonard JP et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol 2010; 11: 1149–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pan R, Hogdal LJ, Benito JM, Bucci D, Han L, Borthakur G et al. Selective BCL-2 Inhibition by ABT-199 Causes On-Target Cell Death in Acute Myeloid Leukemia. Cancer Discov 2014; 4: 362–375.

    Article  CAS  PubMed  Google Scholar 

  27. Bogenberger JM, Kornblau SM, Pierceall WE, Lena R, Chow D, Shi CX et al. BCL-2 family proteins as 5-Azacytidine-sensitizing targets and determinants of response in myeloid malignancies. Leukemia 2014; 28: 1657–1665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schanz J, Tuchler H, Sole F, Mallo M, Luno E, Cervera J et al. New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge. J Clin Oncol 2012; 30: 820–829.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Oostendorp RA, Medvinsky AJ, Kusadasi N, Nakayama N, Harvey K, Orelio C et al. Embryonal subregion-derived stromal cell lines from novel temperature-sensitive SV40 T antigen transgenic mice support hematopoiesis. J Cell Sci 2002; 115: 2099–2108.

    CAS  PubMed  Google Scholar 

  30. Oostendorp RA, Robin C, Steinhoff C, Marz S, Brauer R, Nuber UA et al. Long-term maintenance of hematopoietic stem cells does not require contact with embryo-derived stromal cells in cocultures. Stem Cells 2005; 23: 842–851.

    Article  CAS  PubMed  Google Scholar 

  31. Ledran MH, Krassowska A, Armstrong L, Dimmick I, Renstrom J, Lang R et al. Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches. Cell Stem Cell 2008; 3: 85–98.

    Article  CAS  PubMed  Google Scholar 

  32. Haferlach T, Kohlmann A, Wieczorek L, Basso G, Kronnie GT, Bene MC et al. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group. J Clin Oncol 2010; 28: 2529–2537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zekavati A, Nasir A, Alcaraz A, Aldrovandi M, Marsh P, Norton JD et al. Post-transcriptional regulation of BCL2 mRNA by the RNA-binding protein ZFP36L1 in malignant B cells. PLoS One 2014; 9: e102625.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kutuk O, Letai A . Regulation of Bcl-2 family proteins by posttranslational modifications. Curr Mol Med 2008; 8: 102–118.

    Article  CAS  PubMed  Google Scholar 

  35. Ruvolo PP, Deng X, May WS . Phosphorylation of Bcl2 and regulation of apoptosis. Leukemia 2001; 15: 515–522.

    Article  CAS  PubMed  Google Scholar 

  36. Vardiman JW . The World Health Organization (WHO) classification of tumors of the hematopoietic and lymphoid tissues: an overview with emphasis on the myeloid neoplasms. Chem Biol Interact 2010; 184: 16–20.

    Article  CAS  PubMed  Google Scholar 

  37. Malcovati L, Della Porta MG, Strupp C, Ambaglio I, Kuendgen A, Nachtkamp K et al. Impact of the degree of anemia on the outcome of patients with myelodysplastic syndrome and its integration into the WHO classification-based Prognostic Scoring System (WPSS). Haematologica 2011; 96: 1433–1440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Woll PS, Kjallquist U, Chowdhury O, Doolittle H, Wedge DC, Thongjuea S et al. Myelodysplastic syndromes are propagated by rare and distinct human cancer stem cells in vivo. Cancer Cell 2014; 25: 794–808.

    Article  CAS  PubMed  Google Scholar 

  39. Pang WW, Pluvinage JV, Price EA, Sridhar K, Arber DA, Greenberg PL et al. Hematopoietic stem cell and progenitor cell mechanisms in myelodysplastic syndromes. Proc Natl Acad Sci USA 2013; 110: 3011–3016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Konopleva M, Contractor R, Tsao T, Samudio I, Ruvolo PP, Kitada S et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 2006; 10: 375–388.

    Article  CAS  PubMed  Google Scholar 

  41. Ni Chonghaile T, Sarosiek KA, Vo TT, Ryan JA, Tammareddi A, Moore Vdel G et al. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science 2011; 334: 1129–1133.

    Article  PubMed  Google Scholar 

  42. Vo TT, Ryan J, Carrasco R, Neuberg D, Rossi DJ, Stone RM et al. Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML. Cell 2012; 151: 344–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jaiswal S, Ebert BL . MDS is a stem cell disorder after all. Cancer Cell 2014; 25: 713–714.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425: 836–841.

    Article  CAS  PubMed  Google Scholar 

  45. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003; 425: 841–846.

    Article  CAS  PubMed  Google Scholar 

  46. Raaijmakers MH, Scadden DT . Evolving concepts on the microenvironmental niche for hematopoietic stem cells. Curr Opin Hematol 2008; 15: 301–306.

    Article  PubMed  Google Scholar 

  47. Wilson A, Trumpp A . Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 2006; 6: 93–106.

    Article  CAS  PubMed  Google Scholar 

  48. Scadden DT . The stem-cell niche as an entity of action. Nature 2006; 441: 1075–1079.

    Article  CAS  PubMed  Google Scholar 

  49. Li X, Deeg HJ . Murine xenogeneic models of myelodysplastic syndrome: an essential role for stroma cells. Exp Hematol 2014; 42: 4–10.

    Article  CAS  PubMed  Google Scholar 

  50. Raaijmakers MH, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 2010; 464: 852–857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kusadasi N, Oostendorp RA, Koevoet WJ, Dzierzak EA, Ploemacher RE . Stromal cells from murine embryonic aorta-gonad-mesonephros region, liver and gut mesentery expand human umbilical cord blood-derived CAFC(week6) in extended long-term cultures. Leukemia 2002; 16: 1782–1790.

    Article  CAS  PubMed  Google Scholar 

  52. Oostendorp RA, Harvey KN, Kusadasi N, de Bruijn MF, Saris C, Ploemacher RE et al. Stromal cell lines from mouse aorta-gonads-mesonephros subregions are potent supporters of hematopoietic stem cell activity. Blood 2002; 99: 1183–1189.

    Article  CAS  PubMed  Google Scholar 

  53. Parmar A, Marz S, Rushton S, Holzwarth C, Lind K, Kayser S et al. Stromal niche cells protect early leukemic FLT3-ITD+ progenitor cells against first-generation FLT3 tyrosine kinase inhibitors. Cancer Res 2011; 71: 4696–4706.

    Article  CAS  PubMed  Google Scholar 

  54. Omidvar N, Kogan S, Beurlet S, le Pogam C, Janin A, West R et al. BCL-2 and mutant NRAS interact physically and functionally in a mouse model of progressive myelodysplasia. Cancer Res 2007; 67: 11657–11667.

    Article  CAS  PubMed  Google Scholar 

  55. Beurlet S, Omidvar N, Gorombei P, Krief P, Le Pogam C, Setterblad N et al. BCL-2 inhibition with ABT-737 prolongs survival in an NRAS/BCL-2 mouse model of AML by targeting primitive LSK and progenitor cells. Blood 2013; 122: 2864–2876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Choudhary GS, Al-Harbi S, Mazumder S, Hill BT, Smith MR, Bodo J et al. MCL-1 and BCL-xL-dependent resistance to the BCL-2 inhibitor ABT-199 can be overcome by preventing PI3K/AKT/mTOR activation in lymphoid malignancies. Cell Death Dis 2015; 6: e1593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mak DH, Wang RY, Schober WD, Konopleva M, Cortes J, Kantarjian H et al. Activation of apoptosis signaling eliminates CD34+ progenitor cells in blast crisis CML independent of response to tyrosine kinase inhibitors. Leukemia 2012; 26: 788–794.

    Article  CAS  PubMed  Google Scholar 

  58. Konopleva M, Milella M, Ruvolo P, Watts JC, Ricciardi MR, Korchin B et al. MEK inhibition enhances ABT-737-induced leukemia cell apoptosis via prevention of ERK-activated MCL-1 induction and modulation of MCL-1/BIM complex. Leukemia 2012; 26: 778–787.

    Article  CAS  PubMed  Google Scholar 

  59. Muller-Thomas C, Rudelius M, Rondak IC, Haferlach T, Schanz J, Huberle C et al. Response to azacitidine is independent of p53 expression in higher-risk myelodysplastic syndromes and secondary acute myeloid leukemia. Haematologica 2014; 99: e179–e181.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T Haferlach from the Munich Leukemia Laboratory (MLL) for providing gene expression data. We thanks T Haferlach from MLL and M Zingerle from the Gemeinschaftspraxis Hämato-Onkologie Pasing for providing MDS samples and clinical data and J Tuebel from the Klinik für Orthopädie und Sportorthopädie, Klinikum rechts der Isar for technical support. PJJ was supported by a Max Eder-Program grant from the Deutsche Krebshilfe (program #111738), a Human Frontiers Science Program grant (program #RGY0073/2012), a German Jose Carreras Leukemia Foundation grant (DJCLS R 12/22), and a research grant from the Deutsche Forschungsgemeinschaft, Forschergruppe FOR2036 and Novartis for travel support. RAJO was supported by the German Research Foundation (DFG grants OO 8/5, OO 8/9, and FOR 2033)). RAJO and KSG were supported by the German Jose Carreras Leukemia Foundation grant (DJCLS R 11/12). KSG was supported by the German Research Foundation (Go 713/2-1) and the Deutsche Konsortium für Translationale Krebsforschung (DKTK) of the German Cancer Center (DKFZ). We thank Abbvie for supplying ABT-199.

Author contributions

PJJ conceived and supervised the project, analyzed the data and wrote the manuscript. SJ performed the experiments, analyzed the data and wrote the manuscript. KG provided primary samples and clinical data and gave conceptual advice. VR, JK, UH, OG and CH performed experiments. JS, BS, RB, CM-T, H-JK, RAJO, JR and CP provided primary samples and clinical data, and gave conceptual advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P J Jost.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jilg, S., Reidel, V., Müller-Thomas, C. et al. Blockade of BCL-2 proteins efficiently induces apoptosis in progenitor cells of high-risk myelodysplastic syndromes patients. Leukemia 30, 112–123 (2016). https://doi.org/10.1038/leu.2015.179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.179

This article is cited by

Search

Quick links