Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem cell transplantation

High concordance of genomic and cytogenetic aberrations between peripheral blood and bone marrow in myelodysplastic syndrome (MDS)

Abstract

Bone marrow (BM) genetic abnormalities in myelodysplastic syndrome (MDS) have provided important biological and prognostic information; however, frequent BM sampling in older patients has been associated with significant morbidity. Utilizing single-nucleotide polymorphism array (SNP-A) and targeted gene sequencing (TGS) of 24 frequently mutated genes in MDS, we assessed the concordance of genetic abnormalities in BM and peripheral blood (PB) samples concurrently from 201 MDS patients. SNP-A karyotype in BM was abnormal in 108 (54%) and normal in 93 (46%) patients, with 95% (190/201) having an identical PB karyotype. The median copy number (CN) for deletions was significantly lower in BM (CN:1.4 (1–1.9)) than in PB (CN:1.5 (1–1.95), P<0.001). Using TGS, 71% (130/183) patients had BM somatic mutations with 95% (124/130) having identical mutations in PB. The mutant allele burden was lower in PB (median 27% (1–96%)) compared with BM (median 29% (1–100%); P=0.14) with no significant difference in the number, types of mutations or World Health Organization subtype. In all patients with discordant SNP (n=11) and mutation (n=6) profiles between BM and PB, shared abnormalities were always present irrespective of treatment status. Overall, 86% of patients had a clonal aberration with 95% having identical SNP-A karyotype and mutations in PB, thus enabling frequent assessment of response to treatment and disease evolution especially in patients with fibrotic or hypocellular marrows.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al. WHO Classification Of Tumours Of Haematopoietic and Lymphoid Tissues, 4th edn. International Agency for Research on Cancer: Lyon, France, 2008, 439 pp.

    Google Scholar 

  2. Haase D, Germing U, Schanz J, Pfeilstocker M, Nosslinger T, Hildebrandt B et al. New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood 2007; 110: 4385–4395.

    Article  CAS  PubMed  Google Scholar 

  3. Rowley JD . Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243: 290–293.

    CAS  PubMed  Google Scholar 

  4. Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Sole F et al. Revised International Prognostic Scoring System (IPSS-R) for myelodysplastic syndromes. Blood 2012; 120: 2454–2465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mohamedali A, Gaken J, Twine NA, Ingram W, Westwood N, Lea NC et al. Prevalence and prognostic significance of allelic imbalance by single-nucleotide polymorphism analysis in low-risk myelodysplastic syndromes. Blood 2007; 110: 3365–3373.

    Article  CAS  PubMed  Google Scholar 

  6. Tiu RV, Gondek LP, O'Keefe CL, Elson P, Huh J, Mohamedali A et al. Prognostic impact of SNP array karyotyping in myelodysplastic syndromes and related myeloid malignancies. Blood 2011; 117: 4552–4560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med 2011; 364: 2496–2506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 2011; 478: 64–69.

    Article  CAS  PubMed  Google Scholar 

  9. Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med 2011; 365: 1384–1395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Graubert TA, Shen D, Ding L, Okeyo-Owuor T, Lunn CL, Shao J et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet 2012; 44: 53–57.

    Article  CAS  Google Scholar 

  11. Lindsley RC, Ebert BL . The biology and clinical impact of genetic lesions in myeloid malignancies. Blood 2013; 122: 3741–3748.

    Article  CAS  PubMed  Google Scholar 

  12. Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 2013; 122: 3616–3627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Walter MJ, Shen D, Shao J, Ding L, White BS, Kandoth C et al. Clonal diversity of recurrently mutated genes in myelodysplastic syndromes. Leukemia 2013; 27: 1275–1282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Malcovati L, Hellstrom-Lindberg E, Bowen D, Ades L, Cermak J, Del Canizo C et al. Diagnosis and treatment of primary myelodysplastic syndromes in adults: recommendations from the European LeukemiaNet. Blood 2013; 122: 2943–2964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia 2014; 28: 241–247.

    Article  CAS  PubMed  Google Scholar 

  16. Braulke F, Platzbecker U, Muller-Thomas C, Gotze K, Germing U, Brummendorf TH et al. Validation of cytogenetic risk groups according to International Prognostic Scoring Systems by peripheral blood CD34+FISH: results from a German diagnostic study in comparison with an international control group. Haematologica 2014; 100: 205–213.

    Article  PubMed  Google Scholar 

  17. Mohamedali AM, Alkhatabi H, Kulasekararaj A, Shinde S, Mian S, Malik F et al. Utility of peripheral blood for cytogenetic and mutation analysis in myelodysplastic syndrome. Blood 2013; 122: 567–570.

    Article  CAS  PubMed  Google Scholar 

  18. Mian SA, Smith AE, Kulasekararaj AG, Kizilors A, Mohamedali AM, Lea NC et al. Spliceosome mutations exhibit specific associations with epigenetic modifiers and proto-oncogenes mutated in myelodysplastic syndrome. Haematologica 2013; 98: 1058–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Busque L, Patel JP, Figueroa ME, Vasanthakumar A, Provost S, Hamilou Z et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet 2012; 44: 1179–1181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cazzola M, Rossi M, Malcovati L . Biologic and clinical significance of somatic mutations of SF3B1 in myeloid and lymphoid neoplasms. Blood 2013; 121: 260–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Damm F, Chesnais V, Nagata Y, Yoshida K, Scourzic L, Okuno Y et al. BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders. Blood 2013; 122: 3169–3177.

    Article  CAS  PubMed  Google Scholar 

  22. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A et al. Mutation in TET2 in myeloid cancers. N Engl J Med 2009; 360: 2289–2301.

    Article  PubMed  Google Scholar 

  23. Ernst T, Chase AJ, Score J, Hidalgo-Curtis CE, Bryant C, Jones AV et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet 2010; 42: 722–726.

    Article  CAS  PubMed  Google Scholar 

  24. Fernandez-Mercado M, Pellagatti A, Di Genua C, Larrayoz MJ, Winkelmann N, Aranaz P et al. Mutations in SETBP1 are recurrent in myelodysplastic syndromes and often coexist with cytogenetic markers associated with disease progression. Br J Haematol 2013; 163: 235–239.

    CAS  PubMed  Google Scholar 

  25. Grossmann V, Tiacci E, Holmes AB, Kohlmann A, Martelli MP, Kern W et al. Whole-exome sequencing identifies somatic mutations of BCOR in acute myeloid leukemia with normal karyotype. Blood 2011; 118: 6153–6163.

    Article  CAS  PubMed  Google Scholar 

  26. Jadersten M, Saft L, Smith A, Kulasekararaj A, Pomplun S, Gohring G et al. TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J Clin Oncol 2011; 29: 1971–1979.

    Article  PubMed  Google Scholar 

  27. Koskela HLM, Eldfors S, Ellonen P, van Adrichem AJ, Kuusanmaki H, Andersson EI et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med 2012; 366: 1905–1913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kralovics R, Passamonti F, Buser AS, Teo S-S, Tiedt R, Passweg JR et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790.

    Article  CAS  PubMed  Google Scholar 

  29. Langemeijer SMC, Kuiper RP, Berends M, Knops R, Aslanyan MG, Massop M et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet 2009; 41: 838–842.

    Article  CAS  PubMed  Google Scholar 

  30. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010; 363: 2424–2433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Patnaik MM, Hanson CA, Hodnefield JM, Lasho TL, Finke CM, Knudson RA et al. Differential prognostic effect of IDH1 versus IDH2 mutations in myelodysplastic syndromes: a Mayo Clinic study of 277 patients. Leukemia 2012; 26: 101–105.

    Article  CAS  PubMed  Google Scholar 

  32. Rajala HLM, Eldfors S, Kuusanmaki H, van Adrichem AJ, Olson T, Lagstrom S et al. Discovery of somatic STAT5b mutations in large granular lymphocytic leukemia. Blood 2013; 121: 4541–4550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Thol F, Kade S, Schlarmann C, Loffeld P, Morgan M, Krauter J et al. Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood 2012; 119: 3578–3584.

    Article  CAS  PubMed  Google Scholar 

  34. Walter MJ, Ding L, Shen D, Shao J, Grillot M, McLellan M et al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes. Leukemia 2011; 25: 1153–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 2014; 20: 1472–1478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 2014; 37: 2477–2487.

    Article  Google Scholar 

  37. Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 2014; 371: 2477–2487.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sinha S, Thomas D, Yu L, Gentles A, Jung N, Corces-Zimmerman MR et al. Mutant WT1 is associated with DNA hypermethylation of PRC2 targets in AML and responds to EZH2 inhibition. Blood 2014; 125: 316–326.

    Article  PubMed  Google Scholar 

  39. Kernytsky A, Wang F, Hansen E, Schalm S, Straley K, Gliser C et al. IDH2 mutation induced histone and DNA hypermethylation is progressively reversed by small molecule inhibition. Blood 2014; 125: 296–303.

    Article  PubMed  Google Scholar 

  40. Sridhar K, Ross DT, Tibshirani R, Butte AJ, Greenberg PL . Relationship of differential gene expression profiles in CD34+ myelodysplastic syndrome marrow cells to disease subtype and progression. Blood 2009; 114: 4847–4858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Leukaemia Lymphoma Research (UK) and King's College London for funding the King's College Haemato-Oncology Tissue Bank, from which all local samples were processed.

Author Contributions

GJM conceived the study. AMM, JG, FM, AES, TG, SB and SM performed experiments. AMM, AGK, MA, GJM and JG contributed to design, analysis and manuscript preparation. RI, AGK and GJM provided clinical details and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G J Mufti.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamedali, A., Gäken, J., Ahmed, M. et al. High concordance of genomic and cytogenetic aberrations between peripheral blood and bone marrow in myelodysplastic syndrome (MDS). Leukemia 29, 1928–1938 (2015). https://doi.org/10.1038/leu.2015.110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.110

This article is cited by

Search

Quick links