Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Molecular profiling of blastic plasmacytoid dendritic cell neoplasm reveals a unique pattern and suggests selective sensitivity to NF-kB pathway inhibition

Abstract

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare disease of controversial origin recently recognized as a neoplasm deriving from plasmacytoid dendritic cells (pDCs). Nevertheless, it remains an orphan tumor with obscure biology and dismal prognosis. To better understand the pathobiology of BPDCN and discover new targets for effective therapies, the gene expression profile (GEP) of 25 BPDCN samples was analyzed and compared with that of pDCs, their postulated normal counterpart. Validation was performed by immunohistochemistry (IHC), whereas functional experiments were carried out ex vivo. For the first time at the molecular level, we definitely recognized the cellular derivation of BPDCN that proved to originate from the myeloid lineage and in particular, from resting pDCs. Furthermore, thanks to an integrated bioinformatic approach we discovered aberrant activation of the NF-kB pathway and suggested it as a novel therapeutic target. We tested the efficacy of anti-NF-kB-treatment on the BPDCN cell line CAL-1, and successfully demonstrated by GEP and IHC the molecular shutoff of the NF-kB pathway. In conclusion, we identified a molecular signature representative of the transcriptional abnormalities of BPDCN and developed a cellular model proposing a novel therapeutic approach in the setting of this otherwise incurable disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Facchetti F JD, Petrella T . Blastic plasmacytoid dendritic cell neoplasms. In WHO Classification of Tumors of Haematopoietic and Lymphoid Tissues Swerdlow SH, Campo E, Harris NL, et al(eds) IARC: Lyon, France, 2008; pp 145–147.

  2. Assaf C, Gellrich S, Whittaker S, Robson A, Cerroni L, Massone C et al. CD56-positive haematological neoplasms of the skin: a multicentre study of the Cutaneous Lymphoma Project Group of the European Organisation for Research and Treatment of Cancer. J Clin Pathol 2007; 60: 981–989.

    Article  Google Scholar 

  3. Grouard G, Rissoan MC, Filgueira L, Durand I, Banchereau J, Liu YJ . The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J Exp Med 1997; 185: 1101–1111.

    Article  CAS  Google Scholar 

  4. Cella M, Facchetti F, Lanzavecchia A, Colonna M . Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat Immunol 2000; 1: 305–310.

    Article  CAS  Google Scholar 

  5. Soumelis V, Liu YJ . From plasmacytoid to dendritic cell: morphological and functional switches during plasmacytoid pre-dendritic cell differentiation. Eur J Immunol 2006; 36: 2286–2292.

    Article  CAS  Google Scholar 

  6. Feuillard J, Jacob MC, Valensi F, Maynadie M, Gressin R, Chaperot L et al. Clinical and biologic features of CD4(+)CD56(+) malignancies. Blood 2002; 99: 1556–1563.

    Article  CAS  Google Scholar 

  7. Garnache-Ottou F, Feuillard J, Saas P . Plasmacytoid dendritic cell leukaemia/lymphoma: towards a well defined entity? Br J Haematol 2007; 136: 539–548.

    Article  CAS  Google Scholar 

  8. Facchetti F, Ungari M, Marocolo D, Lonardi S, Vermi W . Blastic plasmacytoid dendritic cell neoplasm. Hematol Meet Rep 2009; 3: 1–3.

    Google Scholar 

  9. Bendriss-Vermare N, Chaperot L, Peoc'h M, Vanbervliet B, Jacob MC, Briere F et al. In situ leukemic plasmacytoid dendritic cells pattern of chemokine receptors expression and in vitro migratory response. Leukemia 2004; 18: 1491–1498.

    Article  CAS  Google Scholar 

  10. Petrella T, Bagot M, Willemze R, Beylot-Barry M, Vergier B, Delaunay M et al. Blastic NK-cell lymphomas (agranular CD4+CD56+ hematodermic neoplasms): a review. Am J Clin Pathol 2005; 123: 662–675.

    Article  Google Scholar 

  11. Chen J, Zhou J, Qin D, Xu S, Yan X . Blastic plasmacytoid dendritic cell neoplasm. J Clin Oncol 2011; 29: e27–e29.

    Article  Google Scholar 

  12. Tsagarakis NJ, Kentrou NA, Papadimitriou KA, Pagoni M, Kokkini G, Papadaki H et al. Acute lymphoplasmacytoid dendritic cell (DC2) leukemia: results from the Hellenic Dendritic Cell Leukemia Study Group. Leuk Res 2010; 34: 438–446.

    Article  CAS  Google Scholar 

  13. Jegalian AG, Facchetti F, Jaffe ES . Plasmacytoid dendritic cells: physiologic roles and pathologic states. Adv Anat Pathol 2009; 16: 392–404.

    Article  Google Scholar 

  14. Pagano L, Valentini CG, Pulsoni A, Fisogni S, Carluccio P, Mannelli F et al. Blastic plasmacytoid dendritic cell neoplasm with leukemic presentation: an Italian multicenter study. Haematologica 2013; 98: 239–246.

    Article  Google Scholar 

  15. Pileri A, Delfino C, Grandi V, Agostinelli C, Pileri SA, Pimpinelli N . Blastic plasmacytoid dendritic cell neoplasm (BPDCN): the cutaneous sanctuary. G Ital Dermatol Venereol 2012; 147: 603–608.

    CAS  PubMed  Google Scholar 

  16. Piccaluga PP, Paolini S, Sapienza MR, Pileri SA . Blastic plasmacytoid dendritic cell neoplasm: is it time to redefine the standard of care? Expert Rev Hematol 2012; 5: 353–355.

    Article  CAS  Google Scholar 

  17. Petrella T, Dalac S, Maynadie M, Mugneret F, Thomine E, Courville P et al. CD4+ CD56+ cutaneous neoplasms: a distinct hematological entity? Groupe Francais d'Etude des Lymphomes Cutanes (GFELC). Am J Surg Pathol 1999; 23: 137–146.

    Article  CAS  Google Scholar 

  18. Leroux D, Mugneret F, Callanan M, Radford-Weiss I, Dastugue N, Feuillard J et al. CD4(+), CD56(+) DC2 acute leukemia is characterized by recurrent clonal chromosomal changes affecting 6 major targets: a study of 21 cases by the Groupe Francais de Cytogenetique Hematologique. Blood 2002; 99: 4154–4159.

    Article  CAS  Google Scholar 

  19. Reichard KK, Burks EJ, Foucar MK, Wilson CS, Viswanatha DS, Hozier JC et al. CD4(+) CD56(+) lineage-negative malignancies are rare tumors of plasmacytoid dendritic cells. Am J Surg Pathol 2005; 29: 1274–1283.

    Article  Google Scholar 

  20. Dijkman R, van Doorn R, Szuhai K, Willemze R, Vermeer MH, Tensen CP . Gene-expression profiling and array-based CGH classify CD4+CD56+ hematodermic neoplasm and cutaneous myelomonocytic leukemia as distinct disease entities. Blood 2007; 109: 1720–1727.

    Article  CAS  Google Scholar 

  21. Jardin F, Callanan M, Penther D, Ruminy P, Troussard X, Kerckaert JP et al. Recurrent genomic aberrations combined with deletions of various tumour suppressor genes may deregulate the G1/S transition in CD4+CD56+ haematodermic neoplasms and contribute to the aggressiveness of the disease. Leukemia 2009; 23: 698–707.

    Article  CAS  Google Scholar 

  22. Wiesner T, Obenauf AC, Cota C, Fried I, Speicher MR, Cerroni L . Alterations of the cell-cycle inhibitors p27(KIP1) and p16(INK4a) are frequent in blastic plasmacytoid dendritic cell neoplasms. J Invest Dermatol 2009; 130: 1152–1157.

    Article  Google Scholar 

  23. Lucioni M, Novara F, Fiandrino G, Riboni R, Fanoni D, Arra M et al. Twenty-one cases of blastic plasmacytoid dendritic cell neoplasm: focus on biallelic locus 9p21.3 deletion. Blood 2011; 118: 4591–4594.

    Article  CAS  Google Scholar 

  24. Biddolph SC, Gatter K . Lymphocytes: a practical approach. In Rowland-Jones SL, McMichael AJ, eds Immunohistochemistry of Lymphoid Organs. Oxford UOUP, 2000; pp 27–54.

    Google Scholar 

  25. Agostinelli C, Paterson JC, Gupta R, Righi S, Sandri F, Piccaluga PP et al. Detection of LIM domain only 2 (LMO2) in normal human tissues and haematopoietic and non-haematopoietic tumours using a newly developed rabbit monoclonal antibody. Histopathology 2012; 61: 33–46.

    Article  Google Scholar 

  26. Maeda T, Murata K, Fukushima T, Sugahara K, Tsuruda K, Anami M et al. A novel plasmacytoid dendritic cell line, CAL-1, established from a patient with blastic natural killer cell lymphoma. Int J Hematol 2005; 81: 148–154.

    Article  Google Scholar 

  27. Ng AP, Lade S, Rutherford T, McCormack C, Prince HM, Westerman DA . Primary cutaneous CD4+/CD56+ hematodermic neoplasm (blastic NK-cell lymphoma): a report of five cases. Haematologica 2006; 91: 143–144.

    PubMed  Google Scholar 

  28. Rathinam C, Sauer M, Ghosh A, Rudolph C, Hegazy A, Schlegelberger B et al. Generation and characterization of a novel hematopoietic progenitor cell line with DC differentiation potential. Leukemia 2006; 20: 870–876.

    Article  CAS  Google Scholar 

  29. Panoskaltsis N . Dendritic cells in MDS and AML - cause, effect or solution to the immune pathogenesis of disease? Leukemia 2005; 19: 354–357.

    Article  CAS  Google Scholar 

  30. Sathe P, Vremec D, Wu L, Corcoran L, Shortman K . Convergent differentiation: myeloid and lymphoid pathways to murine plasmacytoid dendritic cells. Blood 2013; 121: 11–19.

    Article  CAS  Google Scholar 

  31. Ishikawa F, Niiro H, Iino T, Yoshida S, Saito N, Onohara S et al. The developmental program of human dendritic cells is operated independently of conventional myeloid and lymphoid pathways. Blood 2007; 110: 3591–3660.

    Article  CAS  Google Scholar 

  32. Yang GX, Lian ZX, Kikuchi K, Moritoki Y, Ansari AA, Liu YJ et al. Plasmacytoid dendritic cells of different origins have distinct characteristics and function: studies of lymphoid progenitors versus myeloid progenitors. J Immunol 2005; 175: 7281–7287.

    Article  CAS  Google Scholar 

  33. Sprenger CC, Drivdahl RH, Woodke LB, Eyman D, Reed MJ, Carter WG et al. Senescence-induced alterations of laminin chain expression modulate tumorigenicity of prostate cancer cells. Neoplasia 2008; 10: 1350–1361.

    Article  CAS  Google Scholar 

  34. Hung WY, Huang KH, Wu CW, Chi CW, Kao HL, Li AF et al. Mitochondrial dysfunction promotes cell migration via reactive oxygen species-enhanced beta5-integrin expression in human gastric cancer SC-M1 cells. Biochim Biophys Acta 2012; 1820: 1102–1110.

    Article  CAS  Google Scholar 

  35. Yamatoji M, Kasamatsu A, Kouzu Y, Koike H, Sakamoto Y, Ogawara K et al. Dermatopontin: a potential predictor for metastasis of human oral cancer. Int J Cancer 2012; 130: 2903–2911.

    Article  CAS  Google Scholar 

  36. Tamamura R, Nagatsuka H, Siar CH, Katase N, Naito I, Sado Y et al. Comparative analysis of basal lamina type IV collagen alpha chains, matrix metalloproteinases-2 and -9 expressions in oral dysplasia and invasive carcinoma. Acta Histochem 2013; 115: 113–119.

    Article  CAS  Google Scholar 

  37. Hatfield KJ, Hovland R, Oyan AM, Kalland KH, Ryningen A, Gjertsen BT et al. Release of angiopoietin-1 by primary human acute myelogenous leukemia cells is associated with mutations of nucleophosmin, increased by bone marrow stromal cells and possibly antagonized by high systemic angiopoietin-2 levels. Leukemia 2007; 22: 287–293.

    Article  Google Scholar 

  38. Van Driessche A, Gao L, Stauss HJ, Ponsaerts P, Van Bockstaele DR, Berneman ZN et al. Antigen-specific cellular immunotherapy of leukemia. Leukemia 2005; 19: 1863–1871.

    Article  CAS  Google Scholar 

  39. Galteland E, Sivertsen EA, Svendsrud DH, Smedshammer L, Kresse SH, Meza-Zepeda LA et al. Translocation t(14;18) and gain of chromosome 18//BCL2: effects on BCL2 expression and apoptosis in B-cell non-Hodgkin's lymphomas. Leukemia 2005; 19: 2313–2323.

    Article  CAS  Google Scholar 

  40. Wang M, Sun L, Qian J, Han X, Zhang L, Lin P et al. Cyclin D1 as a universally expressed mantle cell lymphoma-associated tumor antigen for immunotherapy. Leukemia 2009; 23: 1320–1328.

    Article  CAS  Google Scholar 

  41. Reed JC, Zha H, Aime-Sempe C, Takayama S, Wang HG . Structure-function analysis of Bcl-2 family proteins. Regulators of programmed cell death. Adv Exp Med Biol 1996; 406: 99–112.

    Article  CAS  Google Scholar 

  42. Willis S, Day CL, Hinds MG, Huang DC . The Bcl-2-regulated apoptotic pathway. J Cell Sci 2003; 116: 4053–4056.

    Article  CAS  Google Scholar 

  43. Turco MC, Romano MF, Petrella A, Bisogni R, Tassone P, Venuta S . NF-[kappa]B//Rel-mediated regulation of apoptosis in hematologic malignancies and normal hematopoietic progenitors. Leukemia 2003; 18: 11–17.

    Article  Google Scholar 

  44. Karin M . Nuclear factor-kappaB in cancer development and progression. Nature 2006; 441: 431–436.

    Article  CAS  Google Scholar 

  45. Sarkar FH, Li Y, Wang Z, Kong D . NF-kappaB signaling pathway and its therapeutic implications in human diseases. Int Rev Immunol 2008; 27: 293–319.

    Article  CAS  Google Scholar 

  46. Laubach JP, Mahindra A, Mitsiades CS, Schlossman RL, Munshi NC, Ghobrial IM et al. The use of novel agents in the treatment of relapsed and refractory multiple myeloma. Leukemia 2009; 23: 2222–2232.

    Article  CAS  Google Scholar 

  47. Satou Y, Nosaka K, Koya Y, Yasunaga Ji, Toyokuni S, Matsuoka M . Proteasome inhibitor, bortezomib, potently inhibits the growth of adult T-cell leukemia cells both in vivo and in vitro. Leukemia 2004; 18: 1357–1363.

    Article  CAS  Google Scholar 

  48. Shah JJ, Orlowski RZ . Proteasome inhibitors in the treatment of multiple myeloma. Leukemia 2009; 23: 1964–1979.

    Article  CAS  Google Scholar 

  49. Hirai M, Kadowaki N, Kitawaki T, Fujita H, Takaori-Kondo A, Fukui R et al. Bortezomib suppresses function and survival of plasmacytoid dendritic cells by targeting intracellular trafficking of Toll-like receptors and endoplasmic reticulum homeostasis. Blood 2011; 117: 500–509.

    Article  CAS  Google Scholar 

  50. Hartmann S, Gesk S, Scholtysik R, Kreuz M, Bug S, Vater I et al. High resolution SNP array genomic profiling of peripheral T cell lymphomas, not otherwise specified, identifies a subgroup with chromosomal aberrations affecting the REL locus. Br J Haematol 2010; 148: 402–412.

    Article  Google Scholar 

  51. Martinez-Delgado B, Cuadros M, Honrado E, Ruiz de la Parte A, Roncador G, Alves J et al. Differential expression of NF-[kappa]B pathway genes among peripheral T-cell lymphomas. Leukemia 2005; 19: 2254–2263.

    Article  CAS  Google Scholar 

  52. Compagno M, Lim WK, Grunn A, Nandula SV, Brahmachary M, Shen Q et al. Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 2009; 459: 717–721.

    Article  CAS  Google Scholar 

  53. Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 2007; 12: 115–130.

    Article  CAS  Google Scholar 

  54. Yamamoto M, Ito T, Shimizu T, Ishida T, Semba K, Watanabe S et al. Epigenetic alteration of the NF-kappaB-inducing kinase (NIK) gene is involved in enhanced NIK expression in basal-like breast cancer. Cancer Sci 2010; 101: 2391–2397.

    Article  CAS  Google Scholar 

  55. Garg A, Aggarwal BB . Nuclear transcription factor-kappaB as a target for cancer drug development. Leukemia 2002; 16: 1053–1068.

    Article  CAS  Google Scholar 

  56. Piccaluga PP, Fuligni F, De Leo A, Bertuzzi C, Rossi M, Bacci F et al. Molecular profiling improves classification and prognostication of nodal peripheral T-cell lymphomas: results of a phase iii diagnostic accuracy study. J Clin Oncol 2013; 31: 3019–3025.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr Guarguaglini at the pharmacy-compounding center of S. Orsola-Malpighi Hospital of Bologna, Italy for providing Bortezomib. This work was supported by AIRC (IG10519 and 5xMille10007, Prof Pileri), AIRC (IG 2013 N.14355, Prof Piccaluga), Centro Interdipartimentale per la Ricerca sul Cancro ‘G. Prodi’, BolognAIL, RFO (Prof Pileri, Prof Piccaluga), FIRB Futura 2011 (RBFR12D1CB; Prof Piccaluga), Fondazione Cassa di Risparmio in Bologna, Fondazione della Banca del Monte e Ravenna, Progetto Strategico di Ateneo 2006 (Prof Pileri and Dr Piccaluga) and by MIUR (PRIN 2011, Prof Facchetti and Prof Pileri).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to P P Piccaluga.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sapienza, M., Fuligni, F., Agostinelli, C. et al. Molecular profiling of blastic plasmacytoid dendritic cell neoplasm reveals a unique pattern and suggests selective sensitivity to NF-kB pathway inhibition. Leukemia 28, 1606–1616 (2014). https://doi.org/10.1038/leu.2014.64

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.64

This article is cited by

Search

Quick links