Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Prognostic and biologic significance of DNMT3B expression in older patients with cytogenetically normal primary acute myeloid leukemia

Abstract

DNMT3B encodes a DNA methyltransferase implicated in aberrant epigenetic changes contributing to leukemogenesis. We tested whether DNMT3B expression, measured by NanoString nCounter assay, associates with outcome, gene and microRNA expression and DNA methylation profiles in 210 older (60 years) adults with primary, cytogenetically normal acute myeloid leukemia (CN-AML). Patients were dichotomized into high versus low expressers using median cut. Outcomes were assessed in the context of known CN-AML prognosticators. Gene and microRNA expression, and DNA methylation profiles were analyzed using microarrays and MethylCap-sequencing, respectively. High DNMT3B expressers had fewer complete remissions (CR; P=0.002) and shorter disease-free (DFS; P=0.02) and overall (OS; P<0.001) survival. In multivariable analyses, high DNMT3B expression remained an independent predictor of lower CR rates (P=0.04) and shorter DFS (P=0.04) and OS (P=0.001). High DNMT3B expression associated with a gene expression profile comprising 363 genes involved in differentiation, proliferation and survival pathways, but with only four differentially expressed microRNAs (miR-133b, miR-148a, miR-122, miR-409-3p) and no differential DNA methylation regions. We conclude that high DNMT3B expression independently associates with adverse outcome in older CN-AML patients. Gene expression analyses suggest that DNMT3B is involved in the modulation of several genes, although the regulatory mechanisms remain to be investigated to devise therapeutic approaches specific for these patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Mrózek K, Heerema NA, Bloomfield CD . Cytogenetics in acute leukemia. Blood Rev 2004; 18: 115–136.

    Article  PubMed  Google Scholar 

  2. Mrózek K, Marcucci G, Paschka P, Whitman SP, Bloomfield CD . Clinical relevance of mutations and gene-expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification?. Blood 2007; 109: 431–448.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Walker A, Marcucci G . Molecular prognostic factors in cytogenetically normal acute myeloid leukemia. Expert Rev Hematol 2012; 5: 547–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Whitman SP, Maharry K, Radmacher MD, Becker H, Mrózek K, Margeson D et al. FLT3 internal tandem duplication associates with adverse outcome and gene- and microRNA-expression signatures in patients 60 years of age or older with primary cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. Blood 2010; 116: 3622–3626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Becker H, Marcucci G, Maharry K, Radmacher MD, Mrózek K, Margeson D et al. Favorable prognostic impact of NPM1 mutations in older patients with cytogenetically normal de novo acute myeloid leukemia and associated gene- and microRNA-expression signatures: a Cancer and Leukemia Group B study. J Clin Oncol 2010; 28: 596–604.

    Article  CAS  PubMed  Google Scholar 

  6. Becker H, Marcucci G, Maharry K, Radmacher MD, Mrózek K, Margeson D et al. Mutations of the Wilms tumor 1 gene (WT1) in older patients with primary cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. Blood 2010; 116: 788–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marcucci G, Maharry K, Wu Y-Z, Radmacher MD, Mrózek K, Margeson D et al. IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 2010; 28: 2348–2355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Metzeler KH, Becker H, Maharry K, Radmacher MD, Kohlschmidt J, Mrózek K et al. ASXL1 mutations identify a high-risk subgroup of older patients with primary cytogenetically normal AML within the ELN Favorable genetic category. Blood 2011; 118: 6920–6929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marcucci G, Metzeler KH, Schwind S, Becker H, Maharry K, Mrózek K et al. Age-related prognostic impact of different types of DNMT3A mutations in adults with primary cytogenetically normal acute myeloid leukemia. J Clin Oncol 2012; 30: 742–750.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Schwind S, Marcucci G, Maharry K, Radmacher MD, Mrózek K, Holland KB et al. BAALC and ERG expression levels are associated with outcome and distinct gene and microRNA expression profiles in older patients with de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. Blood 2010; 116: 5660–5669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Heuser M, Beutel G, Krauter J, Döhner K, von Neuhoff N, Schlegelberger B et al. High meningioma 1 (MN1) expression as a predictor for poor outcome in acute myeloid leukemia with normal cytogenetics. Blood 2006; 108: 3898–3905.

    Article  CAS  PubMed  Google Scholar 

  12. Schwind S, Marcucci G, Kohlschmidt J, Radmacher MD, Mrózek K, Maharry K et al. Low expression of MN1 associates with better treatment response in older patients with de novo cytogenetically normal acute myeloid leukemia. Blood 2011; 118: 4188–4198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marcucci G, Mrózek K, Radmacher MD, Garzon R, Bloomfield CD . The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood 2011; 117: 1121–1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schwind S, Maharry K, Radmacher MD, Mrózek K, Holland KB, Margeson D et al. Prognostic significance of expression of a single microRNA, miR-181a, in cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 2010; 28: 5257–5264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marcucci G, Maharry KS, Metzeler KH, Volinia S, Wu Y-Z, Mrózek K et al. Clinical role of microRNAs in cytogenetically normal acute myeloid leukemia: miR-155 upregulation independently identifies high-risk patients. J Clin Oncol 2013; 31: 2086–2093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Eisfeld AK, Marcucci G, Maharry K, Schwind S, Radmacher MD, Nicolet D et al. miR-3151 interplays with its host gene BAALC and independently affects outcome of patients with cytogenetically normal acute myeloid leukemia. Blood 2012; 120: 249–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Marcucci G, Yan P, Maharry K, Frankhouser D, Nicolet D, Metzeler KH et al. Epigenetics meets genetics in acute myeloid leukemia: clinical impact of a novel seven-gene score. J Clin Oncol 2014; 32: 548–556.

    Article  PubMed  Google Scholar 

  18. Yan P, Frankhouser D, Murphy M, Tam HH, Rodriguez B, Curfman J et al. Genome-wide methylation profiling in decitabine-treated patients with acute myeloid leukemia. Blood 2012; 120: 2466–2474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Renneville A, Boissel N, Nibourel O, Berthon C, Helevaut N, Gardin C et al. Prognostic significance of DNA methyltransferase 3A mutations in cytogenetically normal acute myeloid leukemia: a study by the Acute Leukemia French Association. Leukemia 2012; 26: 1247–1254.

    Article  CAS  PubMed  Google Scholar 

  20. Hervouet E, Vallette FM, Cartron PF . Dnmt3/transcription factor interactions as crucial players in targeted DNA methylation. Epigenetics 2009; 4: 487–499.

    Article  CAS  PubMed  Google Scholar 

  21. Trowbridge JJ, Sinha AU, Zhu N, Li M, Armstrong SA, Orkin SH . Haploinsufficiency of Dnmt1 impairs leukemia stem cell function through derepression of bivalent chromatin domains. Genes Dev 2012; 26: 344–349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li KK, Luo LF, Shen Y, Xu J, Chen Z, Chen SJ . DNA methyltransferases in hematologic malignancies. Semin Hematol 2013; 50: 48–60.

    Article  CAS  PubMed  Google Scholar 

  23. Wang J, Walsh G, Liu DD, Lee JJ, Mao L . Expression of ΔDNMT3B variants and its association with promoter methylation of p16 and RASSF1A in primary non-small cell lung cancer. Cancer Res 2006; 66: 8361–8366.

    Article  CAS  PubMed  Google Scholar 

  24. Hlady RA, Novakova S, Opavska J, Klinkebiel D, Peters SL, Bies J et al. Loss of Dnmt3b function upregulates the tumor modifier Ment and accelerates mouse lymphomagenesis. J Clin Invest 2012; 122: 163–177.

    Article  CAS  PubMed  Google Scholar 

  25. Cancer Genome Atlas Research Network Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. New Engl J Med 2013; 368: 2059–2074.

    Article  Google Scholar 

  26. Hayette S, Thomas X, Jallades L, Chabane K, Charlot C, Tigaud I et al. High DNA methyltransferase DNMT3B levels: a poor prognostic marker in acute myeloid leukemia. PLoS One 2012; 7: e51527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Blum W, Garzon R, Klisovic RB, Schwind S, Walker A, Geyer S et al. Clinical response and miR-29b predictive significance in older AML patients treated with a 10-day schedule of decitabine. Proc Natl Acad Sci USA 2010; 107: 7473–7478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mayer RJ, Davis RB, Schiffer CA, Berg DT, Powell BL, Schulman P et al. Intensive postremission chemotherapy in adults with acute myeloid leukemia. N Engl J Med 1994; 331: 896–903.

    Article  CAS  PubMed  Google Scholar 

  29. Stone RM, Berg DT, George SL, Dodge RK, Paciucci PA, Schulman P et al. Granulocyte-macrophage colony-stimulating factor after initial chemotherapy for elderly patients with primary acute myelogenous leukemia. N Engl J Med 1995; 332: 1671–1677.

    Article  CAS  PubMed  Google Scholar 

  30. Lee EJ, George SL, Caligiuri M, Szatrowski TP, Powell BL, Lemke S et al. Parallel phase I studies of daunorubicin given with cytarabine and etoposide with or without the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age or older with acute myeloid leukemia: results of Cancer and Leukemia Group B study 9420. J Clin Oncol 1999; 17: 2831–2839.

    Article  CAS  PubMed  Google Scholar 

  31. Baer MR, George SL, Sanford BL, Mrózek K, Kolitz JE, Moore JO et al. Escalation of daunorubicin and addition of etoposide in the ADE regimen in acute myeloid leukemia patients aged 60 years and older: Cancer and Leukemia Group B study 9720. Leukemia 2011; 25: 800–807.

    Article  CAS  PubMed  Google Scholar 

  32. Marcucci G, Moser B, Blum W, Stock W, Wetzler M, Kolitz JE et al. A phase III randomized trial of intensive induction and consolidation chemotherapy±oblimersen, a pro-apoptotic Bcl-2 antisense oligonucleotide in untreated acute myeloid leukemia patients &gt;60 years old. J Clin Oncol 2007; 25 (suppl): 360s (abstract 7012).

    Google Scholar 

  33. Mrózek K, Carroll AJ, Maharry K, Rao KW, Patil SR, Pettenati MJ et al. Central review of cytogenetics is necessary for cooperative group correlative and clinical studies of adult acute leukemia: the Cancer and Leukemia Group B experience. Int J Oncol 2008; 33: 239–244.

    PubMed  Google Scholar 

  34. Payton JE, Grieselhuber NR, Chang LW, Murakami M, Geiss GK, Link DC et al. High throughput digital quantification of mRNA abundance in primary human acute myeloid leukemia samples. J Clin Invest 2009; 119: 1714–1726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Whitman SP, Archer KJ, Feng L, Baldus C, Becknell B, Carlson BD et al. Absence of the wild-type allele predicts poor prognosis in adult de novo acute myeloid leukemia with normal cytogenetics and the internal tandem duplication of FLT3: a Cancer and Leukemia Group B study. Cancer Res 2001; 61: 7233–7239.

    CAS  PubMed  Google Scholar 

  36. Thiede C, Steudel C, Mohr B, Schaich M, Schäkel U, Platzbecker U et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 2002; 99: 4326–4335.

    Article  CAS  PubMed  Google Scholar 

  37. Yamamoto Y, Kiyoi H, Nakano Y, Suzuki R, Kodera Y, Miyawaki S et al. Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood 2001; 97: 2434–2439.

    Article  CAS  PubMed  Google Scholar 

  38. Whitman SP, Ruppert AS, Marcucci G, Mrózek K, Paschka P, Langer C et al. Long-term disease-free survivors with cytogenetically normal acute myeloid leukemia and MLL partial tandem duplication: a Cancer and Leukemia Group B study. Blood 2007; 109: 5164–5167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Marcucci G, Maharry K, Radmacher MD, Mrózek K, Vukosavljevic T, Paschka P et al. Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: a Cancer and Leukemia Group B study. J Clin Oncol 2008; 26: 5078–5087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Paschka P, Marcucci G, Ruppert AS, Whitman SP, Mrózek K, Maharry K et al. Wilms’ tumor 1 gene mutations independently predict poor outcome in adults with cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 2008; 26: 4595–4602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Metzeler KH, Maharry K, Radmacher MD, Mrózek K, Margeson D, Becker H et al. TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 2011; 29: 1373–1381.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mendler JH, Maharry K, Radmacher MD, Mrózek K, Becker H, Metzeler KH et al. RUNX1 mutations are associated with poor outcome in younger and older patients with cytogenetically normal acute myeloid leukemia and with distinct gene and microRNA expression signatures. J Clin Oncol 2012; 30: 3109–3118.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Marcucci G, Radmacher MD, Maharry K, Mrózek K, Ruppert AS, Paschka P et al. MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008; 358: 1919–1928.

    Article  CAS  PubMed  Google Scholar 

  44. Metzeler KH, Hummel M, Bloomfield CD, Spiekermann K, Braess J, Sauerland MC et al. An 86-probe-set gene-expression signature predicts survival in cytogenetically normal acute myeloid leukemia. Blood 2008; 112: 4193–4201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang da W, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57.

    Article  PubMed  Google Scholar 

  46. Vittinghoff E, Glidden DV, Shiboski SC, McCulloch CE . Regression Methods in Biostatistics: Linear, Logistic, Survival and Repeated Measures Models. Springer: New York, NY, USA, 2005.

    Google Scholar 

  47. Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010; 115: 453–474.

    Article  PubMed  Google Scholar 

  48. Zhao H, Li M, Li L, Yang X, Lan G, Zhang Y . MiR-133b is down-regulated in human osteosarcoma and inhibits osteosarcoma cells proliferation, migration and invasion, and promotes apoptosis. PLoS One 2013; 8: e83571.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Duan F-T, Qian F, Fang K, Lin K-Y, Wang W-T, Chen Y-Q . miR-133b, a muscle-specific microRNA, is a novel prognostic marker that participates in the progression of human colorectal cancer via regulation of CXCR4 expression. Mol Cancer 2013; 12: 164.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sturrock A, Mir-Kasimov M, Baker J, Rowley J, Paine R 3rd . Key role of microRNA in the regulation of granulocyte macrophage colony-stimulating factor expression in murine alveolar epithelial cells during oxidative stress. J Biol Chem 2014; 289: 4095–4105.

    Article  CAS  PubMed  Google Scholar 

  51. Duursma AM, Kedde M, Schrier M, le Sage C, Agami R . miR-148 targets human DNMT3b protein coding region. RNA 2008; 14: 872–877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhu A, Xia J, Zuo J, Jin S, Zhou H, Yao L et al. MicroRNA-148a is silenced by hypermethylation and interacts with DNA methyltransferase 1 in gastric cancer. Med Oncol 2012; 29: 2701–2709.

    Article  CAS  PubMed  Google Scholar 

  53. Hsu SH, Wang B, Kota J, Yu J, Costinean S, Kutay H et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest 2012; 122: 2871–2883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Köberle V, Kronenberger B, Pleli T, Trojan J, Imelmann E, Peveling-Oberhag J et al. Serum microRNA-1 and microRNA-122 are prognostic markers in patients with hepatocellular carcinoma. Eur J Cancer 2013; 49: 3442–3449.

    Article  PubMed  Google Scholar 

  55. Li A, Song W, Qian J, Li Y, He J, Zhang Q et al. MiR-122 modulates type I interferon expression through blocking suppressor of cytokine signaling 1. Int J Biochem Cell Biol 2013; 45: 858–865.

    Article  CAS  PubMed  Google Scholar 

  56. Zheng B, Liang L, Huang S, Zha R, Liu L, Jia D et al. MicroRNA-409 suppresses tumour cell invasion and metastasis by directly targeting radixin in gastric cancers. Oncogene 2012; 31: 4509–4516.

    Article  CAS  PubMed  Google Scholar 

  57. Mrózek K, Marcucci G, Nicolet D, Maharry KS, Becker H, Whitman SP et al. Prognostic significance of the European LeukemiaNet standardized system for reporting cytogenetic and molecular alterations in adults with acute myeloid leukemia. J Clin Oncol 2012; 30: 4515–4523.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gaidzik VI, Schlenk RF, Paschka P, Stölzle A, Späth D, Kuendgen A et al. Clinical impact of DNMT3A mutations in younger adult patients with acute myeloid leukemia: results of the AML Study Group (AMLSG). Blood 2013; 121: 4769–4777.

    Article  CAS  PubMed  Google Scholar 

  59. Hagemann S, Kuck D, Stresemann C, Prinz F, Brueckner B, Mund C et al. Antiproliferative effects of DNA methyltransferase 3B depletion are not associated with DNA demethylation. PLoS One 2012; 7: e36125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Russler-Germain DA, Spencer DH, Young MA, Lamprecht TL, Miller CA, Fulton R et al. The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers. Cancer Cell 2014; 25: 442–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Cancer and Leukemia Group B institutions, and their principal investigators participating in this study are provided in the Supplementary Information. We thank Donna Bucci and the CALGB/Alliance Leukemia Tissue Bank at The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA for sample processing and storage services; Lisa J. Sterling and Chris Finks for data management; and The Ohio State University Comprehensive Cancer Center’s Nucleic Acid and Microarray Shared Resources for technical support. This work was supported in part by the National Cancer Institute (grants CA101140, CA114725, CA140158, CA31946, CA33601, CA16058, CA77658 and CA129657), the Coleman Leukemia Research Foundation, the Pelotonia Fellowship Program (A-KE), the Conquer Cancer Foundation (JHM) and the Deutsche Krebshilfe–Dr Mildred Scheel Cancer Foundation (HB).

Author Contributions

CN, JK, SV, KMr, GM and CDB designed the study, analyzed the data and wrote the manuscript, and all authors agreed on the final version; SPW, KHM, A-KE, PY, DF, HB, SS, JHM, JPC, Y-ZW, and RB carried out laboratory-based research; JK, KMa, SV and DN performed statistical analyses; and AJC, MRB, BLP, JEK, JOM, THC, RAL, RMS, KMr, GM and CDB were involved directly or indirectly in the care of patients and/or sample procurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K Mrózek, G Marcucci or C D Bloomfield.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Presented in part at the 18th Congress of the European Hematology Association, Stockholm, Sweden, 13–;16 June 2013, and published in abstract form: Niederwieser C, Kohlschmidt J, Maharry K, Mrózek K, Metzeler K, Volinia S et al. High expression of DNMT3B negatively impacts on clinical outcome of older patients (pts) with primary cytogenetically normal (CN) acute myeloid leukemia (AML) (CALGB 20202 (Alliance)). Haematologica 2013; 98(suppl 1): 484 (abstract S1168).

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niederwieser, C., Kohlschmidt, J., Volinia, S. et al. Prognostic and biologic significance of DNMT3B expression in older patients with cytogenetically normal primary acute myeloid leukemia. Leukemia 29, 567–575 (2015). https://doi.org/10.1038/leu.2014.267

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.267

This article is cited by

Search

Quick links