Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Expression of myeloperoxidase in acute myeloid leukemia blasts mirrors the distinct DNA methylation pattern involving the downregulation of DNA methyltransferase DNMT3B

Abstract

Myeloperoxidase (MPO) has been associated with both a myeloid lineage commitment and favorable prognosis in patients with acute myeloid leukemia (AML). DNA methyltransferase inhibitors (decitabine and zeburaline) induced MPO gene promoter demethylation and MPO gene transcription in AML cells with low MPO activity. Therefore, MPO gene transcription was directly and indirectly regulated by DNA methylation. A DNA methylation microarray subsequently revealed a distinct methylation pattern in 33 genes, including DNA methyltransferase 3 beta (DNMT3B), in CD34-positive cells obtained from AML patients with a high percentage of MPO-positive blasts. Based on the inverse relationship between the methylation status of DNMT3B and MPO, we found an inverse relationship between DNMT3B and MPO transcription levels in CD34-positive AML cells (P=0.0283). In addition, a distinct methylation pattern was observed in five genes related to myeloid differentiation or therapeutic sensitivity in CD34-positive cells from AML patients with a high percentage of MPO-positive blasts. Taken together, the results of the present study indicate that MPO may serve as an informative marker for identifying a distinct and crucial DNA methylation profile in CD34-positive AML cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hoyle CF, Gray RG, Wheatley K, Wheatley K, Swirsky D, de Bastos M et al. Prognostic importance of Sudan Black positivity: a study of bone marrow slides from 1386 patients with de novo acute myeloid leukemia. Br J Haematol 1991; 79: 398–407.

    Article  CAS  PubMed  Google Scholar 

  2. Matsuo T, Cox C, Bennett JM . Prognostic significance of myeloperoxidase positivity of blast cells in acute myeloblastic leukemia without maturation (FAB: M1): an ECOG study. Hematol Pathol 1989; 3: 153–158.

    CAS  PubMed  Google Scholar 

  3. Matsuo T, Kuriyama K, Miyazaki Y, Yoshida S, Tomonaga M, Emi N et al. The percentage of myeloperoxidase-positive blast cells is a strong independent prognostic factor in acute myeloid leukemia, even in the patients with normal karyotype. Leukemia 2003; 17: 1538–1543.

    Article  CAS  PubMed  Google Scholar 

  4. Miyawaki S, Sakamaki H, Ohtake S, Emi N, Yagasaki F, Mitani K et al. A randomized, postremission comparison of four courses of standard-dose consolidation therapy without maintenance therapy versus three courses of standard-dose consolidation with maintenance therapy in adults with acute myeloid leukemia. Cancer 2005; 104: 2726–2734.

    Article  CAS  PubMed  Google Scholar 

  5. Ohtake S, Miyawaki S, Fujita H, Kiyoi H, Shinagawa K, Usui N et al. Randomized study of induction therapy comparing standard-dose idarubicin with high-dose daunorubicin in adult patients with previously untreated acute myeloid leukemia: the JALSG AML201 Study. Blood 2011; 117: 2358–2365.

    Article  CAS  PubMed  Google Scholar 

  6. Sawayama Y, Miyazaki Y, Ando K, Horio K, Tsutsumi C, Imanishi D et al. Expression of myeloperoxidase enhances the chemosensitivity of leukemia cells through the generation of reactive species and the nitration of protein. Leukemia 2008; 22: 956–964.

    Article  CAS  PubMed  Google Scholar 

  7. Nakazato T, Sagawa M, Yamato K, Xian M, Yamamoto T, Suematsu M et al. Myeloperoxidase is a key regulator of oxidative stress mediated apoptosis in myeloid leukemic cells. Clin Cancer Res 2007; 13: 5436–5445.

    Article  CAS  PubMed  Google Scholar 

  8. Taguchi J, Miyazaki Y, Tsutsumi C, Sawayama Y, Ando K, Tsushima H et al. Expression of the myeloperoxidase gene in AC133 positive leukemia cells relates to the prognosis of acute myeloid leukemia. Leuk Res 2006; 30: 1105–1112.

    Article  CAS  PubMed  Google Scholar 

  9. Austin GE, Zhao W-G, Zhang W, Austin ED, Findley HW, Murtagh JJ . Identification and characterization of the human myeloperoxidase promoter. Leukemia 1995; 9: 848–857.

    CAS  PubMed  Google Scholar 

  10. Zhao W-G, Regmi A, Austin ED, Braun JE, Racine M, Austin GE . Cis-elements in the promoter region of the human myeloperoxidase gene. Leukemia 1996; 10: 1089–1103.

    CAS  PubMed  Google Scholar 

  11. Zhao W-G, Lu J-P, Austin GE . Enhancement of myeloperoxidase promoter function by PEBP2/CBF or inhibition by an Sp1-containing repressor requires the participation of a third element DP4. Blood 1996; 88 (Suppl 1): 47a.

    Google Scholar 

  12. Zhao W-G, Regmi A, Lu J-P, Austin GE . Identification and functional analysis of multiple murine myeloperoxidase (MPO) promoters and comparison with the human MPO promoter region. Leukemia 1997; 11: 97–105.

    Article  CAS  PubMed  Google Scholar 

  13. Austin GE, Zhao WG, Regmi A, Lu JP, Braun J . Identification of an upstream enhancer containing an AML1 site in the human myeloperoxidase (MPO) gene. Leuk Res 1998; 22: 1037–1048.

    Article  CAS  PubMed  Google Scholar 

  14. Yao C, Qin Z, Works KN, Austin GE, Young AN . C/EBP and C-Myb sites are important for the functional activity of the human myeloperoxidase upstream enhancer. Biochem Biophys Res Commun 2008; 371: 309–314.

    Article  CAS  PubMed  Google Scholar 

  15. Khoury H, Dalal BI, Nantel SH, Horsman DE, Lavoie JC, Shepherd JD et al. Correlation between karyotype and quantitative immunophenotype in acute myelogenous leukemia with t(8;21). Mod Pathol 2004; 17: 1211–1216.

    Article  PubMed  Google Scholar 

  16. Shimada H, Ichikawa H, Ohki M . Potential involvement of the AML1-MTG8 fusion protein in the granulocytic maturation characteristic of the t(8;21) acute myelogenous leukemia revealed by microarray analysis. Leukemia 2002; 16: 874–885.

    Article  CAS  PubMed  Google Scholar 

  17. Meyers S, Lenny N, Hiebert SW . The t(8;21) fusion protein interferes with AML-1B-dependent transcriptional activation. Mol Cell Biol 1995; 15: 1974–1982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tominaga-Sato S, Tsushima H, Ando K, Itonaga H, Imaizumi Y, Imanishi D et al. Expression of myeloperoxidase and gene mutations in AML patients with normal karyotype: double CEBPA mutations are associated with high percentage of MPO positivity in leukemic blasts. Int J Hematol 2011; 94: 81–89.

    Article  CAS  PubMed  Google Scholar 

  19. Kato N, Kitamura J, Doki N, Komeno Y, Watanabe-Okochi N, Togami K et al. Two types of C/EBPα mutations play distinct but collaborative roles in leukemogenesis; lessons from clinical data and BMT models. Blood 2011; 117: 221–233.

    Article  CAS  PubMed  Google Scholar 

  20. Momparler RL, Bovenzi V . DNA methylation and cancer. J Cell Physiol 2000; 183: 145–154.

    Article  CAS  PubMed  Google Scholar 

  21. Issa JP . Methylation and prognosis: of molecular clocks and hypermethylation phenotypes. Clin Cancer Res 2003; 9: 2879–2881.

    CAS  PubMed  Google Scholar 

  22. Jones PA, Baylin SB . The epigenetic of cancer. Cell 2007; 128: 683–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schmelz K, Sattler N, Wagner M, Lubbert M, Dorken B, Tamm I . Induction of gene expression by 5-Aza-2’-deoxycytidine in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) but not epithelial cells by DNA-methylation-dependent and –independent mechanisms. Leukemia 2005; 19: 103–111.

    Article  CAS  PubMed  Google Scholar 

  24. Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 2010; 17: 13–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bibikova M, Le J, Barnes B, Saedinia-Melnyk S, Zhou L, Shen R et al. Genome-wide DNA methylation profiling using infinium assay. Epigenomics 2009; 1: 177–200.

    Article  CAS  PubMed  Google Scholar 

  26. Gunderson KL, Steemers FJ, Ren H, Ng P, Zhou L, Tsan C et al. Whole-genome genotyping. Methods Enzymol 2006; 410: 359–376.

    Article  CAS  PubMed  Google Scholar 

  27. Steemers FJ, Gunderson KL . Whole genome genotyping technologies on the BeadArray platform. Biotechnol J 2007; 2: 41–49.

    Article  CAS  PubMed  Google Scholar 

  28. Yang AS, Estecio MR, Doshi K, Kondo Y, Tajara EH, Issa JP . A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 2004; 32: e38.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Okano M, Xie S, Li E . Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet 1998; 19: 219–220.

    Article  CAS  PubMed  Google Scholar 

  30. Aimiuwu J, Wang H, Chen P, Xie Z, Wang J, Liu S et al. RNA-dependent inhibition of ribonucleotide reductase is a major pathway for 5-azacitidine activity in acute myeloid leukemia. Blood 2012; 119: 5229–5238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aoyama S, Nakano H, Danbara M, Higashihara M, Harigae H, Takahashi S . The differentiation and apoptotic effects of 2-aza-5’deoxycytidine are dependent on the PU.1 expression level in PU.1-transgenic K562 cells. Biochem Biophys Res Commun 2012; 420: 775–781.

    Article  CAS  PubMed  Google Scholar 

  32. Curik N, Burda P, Vargova K, Pospisil V, Belickova M, Vlckova P et al. 5-azacitidine in aggressive myelodysplastic syndromes regulates chromatin structure at PU.1 gene and cell differentiation capacity. Leukemia 2012; 26: 1804–1811.

    Article  CAS  PubMed  Google Scholar 

  33. Kulis M, Heath S, Bibikova M, Queiros AC, Navarro A, Clot G et al. Epigenomic analysis detects widespread gene-body DNA hypomethylation in chronic lymphocytic leukemia. Nat Genet 2012; 44: 1236–1242.

    Article  CAS  PubMed  Google Scholar 

  34. Razin A, Riggs AD . DNA methylation and gene function. Science 1980; 210: 604–610.

    Article  CAS  PubMed  Google Scholar 

  35. Robertson KD . DNA methylation, methyltransferases, and cancer. Oncogene 2001; 20: 3139–3155.

    Article  CAS  PubMed  Google Scholar 

  36. Arand J, Spieler D, Karius T, Branco MR, Meilinger D, Meissner A et al. In vitro control of CpG and non-CpG DNA methylation by DNA methyltransferases. PLoS Genet 2012; 8: e1002750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med 2010; 363: 2424–2433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Marcucci G, Metzeler KH, Schwind S, Becker H, Maharry K, Mrozek K et al. Age-related prognostic impact of different types of DNMT3A mutations in adults with primary cytogenetically normal acute myeloid leukemia. J Clin Oncol 2012; 30: 742–750.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y et al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 2011; 43: 309–315.

    Article  CAS  PubMed  Google Scholar 

  40. Yamashita Y, Yuan J, Suetake I, Suzuki H, Ishikawa Y, Choi YL et al. Array-based genomic resequencing of human leukemia. Oncogene 2010; 29: 3723–3731.

    Article  CAS  PubMed  Google Scholar 

  41. Kim SJ, Zhao H, Hardikar S, Singh AK, Goodell MA, Chen T . A DNMT3A mutation common in AML exhibits dominant-negative effects in murine ES cells. Blood 2013; 122: 4086–4089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Thol F, Damm F, Ludeking A, Winschel C, Wagner K, Morgan M et al. Incidence and prognostic influence of DNMT3A mutations in acute myeloid leukemia. J Clin Oncol 2011; 29: 2889–2896.

    Article  CAS  PubMed  Google Scholar 

  43. Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA et al. The human DNA methyltransferase (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissue and overexpression in tumors. Nucleic Acids Res 1999; 27: 2291–2298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Girault I, Tozlu S, Lidereau R, Bieche I . Expression analysis of DNA methyltransferase 1, 3A, and 3B in sporadic breast carcinomas. Clin Cancer Res 2003; 9: 4415–4422.

    CAS  PubMed  Google Scholar 

  45. Roll JD, Rivenbark AG, Jones WD, Coleman WB . DNMT3b overexpression contributes to a hypermethylator phenotype in human breast cancer cell lines. Mol Cancer 2008; 7: 15.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mizuno S, Chijiwa T, Okamura T, Akashi K, Fukumaki Y, Niho Y et al. Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood 2001; 97: 1172–1179.

    Article  CAS  PubMed  Google Scholar 

  47. Hayette S, Thomas X, Jallades L, Chabane K, Charlot C, Tigaud I et al. High DNA methyltransferase DNMT3B levels: a poor prognostic marker in acute myeloid leukemia. PLoS One 2012; 7: e51527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shah MY, Vasanthankumar A, Barnes NY, Figueroa ME, Kamp A, Hendrick C et al. DNMT3B7, a truncated DNMT3B isoform expressed in human tumors, disrupts embryonic development and accelerates lymphomagenesis. Cancer Res 2010; 70: 5840–5850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gopalakrishnan S, Van Emburgh BO, Shan J, Su Z, Fields CR, Vieweg J et al. A novel DNMT3B splice variant expressed in tumor and pluripotent cells modulates genomic DNA methylation patterns and displays altered DNA binding. Mol Cancer Rs 2009; 7: 1622–1634.

    Article  CAS  Google Scholar 

  50. Van Emburgh BO, Robertson KD . Modulation of DNMT3b function in vitro by interactions with Dnmt3L, Dnmt3a and Dnmt3b splice variants. Nucleic Acids Res 2001; 39: 4984–5002.

    Article  Google Scholar 

  51. Gopalakrishna-Pilai S, Iverson LE . A DNMT3B alternatively spliced exon and encoded peptide are novel biomarkers of human pluripotent stem cells. PLoS One 2011; 6: e20663.

    Article  Google Scholar 

  52. Wu CH, Gordon J, Rastegar M, Ogretmen B, Safa AR . Proteinase-3, a serine protease which mediates doxorubicin-induced apoptosis in the HL-60 leukemia cell line, is downregulated in its doxorubicin-resistant variant. Oncogene 2002; 21: 5160–5174.

    Article  CAS  PubMed  Google Scholar 

  53. Aqirre X, Roman-Gomez J, Jimenez-Velasco A, Garate L, Montiel-Duarte C, Navarro G et al. ASPP1, a common activator of TP53, is inactivated by aberrant methylation of its promoter in acute lymphoblastic leukemia. Oncogene 2006; 25: 1862–1870.

    Article  Google Scholar 

  54. Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 2005; 123: 819–831.

    Article  CAS  PubMed  Google Scholar 

  55. Taketani T, Taki T, Shibuya N, Kikuchi A, Hanada R, Hayashi Y . Novel NUP98-HOXC11 fusion gene resulted from a chromosomal break within exon 1 of HOXC11 in acute myeloid leukemia with t(11;12)(p15;q13). Cancer Res 2002; 62: 4571–4574.

    CAS  PubMed  Google Scholar 

  56. Lin M, Sutherland DR, Horsfall W, Totty N, Yeo E, Nayar R et al. Cell surface antigen CD109 is a novel member of the alpha(2) macroglobulin/C3, C4, C5 family of thioester-containing proteins. Blood 2002; 99: 1683–1691.

    Article  CAS  PubMed  Google Scholar 

  57. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A et al. Mutation in TET2 in myeloid cancers. N Engl J Med 2009; 360: 2289–2301.

    Article  PubMed  Google Scholar 

  58. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 2009; 361: 1058–1066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Carbuccia N, Trouplin V, Gelsi-Boyer V, Murati A, Rocquain J, Adelaide J et al. Mutuali exclusion of ASXL1 and NPM1 mutations in a series of acute myeloid leukemias. Leukemia 2010; 24: 469–473.

    Article  CAS  PubMed  Google Scholar 

  60. Shih AH, Abdel-Wahab O, Patel JP, Levine RL . The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer 2012; 12: 599–612.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms M Yamaguchi and Ms H Urakami for their technical assistance. This work was partly supported by the grant from the Ministry of Health, Labour and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Imanishi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author contributions

HI and Y Miyazaki conceived and designed the study; HI, DI, WYF, SS, KA, YS, DS, KT, HH, YI, JT, HT, SY, TF, TH, Y Moriuchi, KY and Y Miyazaki collected and analyzed the samples and data; HI and Y Miyazaki performed the statistical analysis, wrote the manuscript and created the figures and tables; and all authors critically reviewed the manuscript and read and approved the final version.

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itonaga, H., Imanishi, D., Wong, YF. et al. Expression of myeloperoxidase in acute myeloid leukemia blasts mirrors the distinct DNA methylation pattern involving the downregulation of DNA methyltransferase DNMT3B. Leukemia 28, 1459–1466 (2014). https://doi.org/10.1038/leu.2014.15

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.15

Keywords

This article is cited by

Search

Quick links