Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Molecular Targets for Therapy

Identification of Wee1 as a novel therapeutic target for mutant RAS-driven acute leukemia and other malignancies

Abstract

Direct targeting of rat sarcoma (RAS), which is frequently mutated, has proven to be challenging, and inhibition of individual downstream RAS mediators has resulted in limited clinical efficacy. We designed a chemical screen to identify compounds capable of potentiating mammalian target of rapamycin (mTOR) inhibition in mutant RAS-positive leukemia, and identified a Wee1 inhibitor. Synergy was observed in both mutant neuroblastoma RAS viral oncogene homolog (NRAS)- and mutant kirsten RAS viral oncogene homolog (KRAS)-positive acute myelogenous leukemia (AML) cell lines and primary patient samples. The observed synergy enhanced dephosphorylation of AKT, 4E-binding protein 1 and s6 kinase, and correlated with increased apoptosis. The specificity of Wee1 as the target of MK-1775 was validated by Wee1 knockdown, as well as partial reversal of drug combination-induced apoptosis by a cyclin-dependent kinase 1 (CDK1) inhibitor. Importantly, we also extended our findings to other mutant RAS-expressing malignancies, including mutant NRAS-positive melanoma, and mutant KRAS-positive colorectal cancer, pancreatic cancer and lung cancer. We observed favorable responses with combined Wee1/mTOR inhibition in human cancer cell lines from multiple malignancies, and inhibition of tumor growth in in vivo models of mutant KRAS lung cancer and leukemia. The present study introduces for the first time Wee1 inhibition combined with mTOR inhibition as a novel therapeutic strategy for the selective treatment of mutant RAS-positive leukemia and other mutant RAS-expressing malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Downward J . Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 2003; 3: 11–22.

    Article  CAS  PubMed  Google Scholar 

  2. Bowen DT, Frew ME, Hills R, Gale RE, Wheatley K, Groves MJ et al. RAS mutation in acute myeloid leukemia is associated with distinct cytogenetic subgroups but does not influence outcome in patients younger than 60 years. Blood 2005; 106: 2113–2119.

    Article  CAS  PubMed  Google Scholar 

  3. Bacher U, Haferlach T, Schoch C, Kern W, Schnittger S . Implications of NRAS mutations in AML: a study of 2502 patients. Blood 2006; 107: 3847–3853.

    Article  CAS  PubMed  Google Scholar 

  4. Nakao M, Janssen JW, Seriu T, Bartram CR . Rapid and reliable detection of N-ras mutations in acute lymphoblastic leukemia by melting curve analysis using LightCycler technology. Leukemia 2000; 14: 312–315.

    Article  CAS  PubMed  Google Scholar 

  5. Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. K-RAS . (G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 2013; 503: 548–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lim SM, Westover KD, Ficarro SB, Harrison RA, Choi HG, Pacold ME et al. Therapeutic targeting of oncogenic K-RAS by a covalent catalytic site inhibitor. Angew Chem Int Ed Engl 2014; 53: 199–204.

    Article  CAS  PubMed  Google Scholar 

  7. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Franklin RA, Montalto G et al. RAS/Raf/MEK/ERK and PI3K/PTEN/AKT/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance. Oncotarget 2012; 3: 1068–1111.

    PubMed  PubMed Central  Google Scholar 

  8. Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y et al. An ATP-competitice mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 2009; 284: 8023–8032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Igarashi M, Nagata A, Jinno S, Suto K, Okayama H . Wee1+-like gene in human. Nature 1991; 353: 80–83.

    Article  CAS  PubMed  Google Scholar 

  10. Parker LL, Piwnica-Worms H . Inactivation of the p34cdc2 -cyclin B complex by the human WEE1 tyrosine kinase. Science 1992; 257: 1955–1957.

    Article  CAS  PubMed  Google Scholar 

  11. McGowan CH, Russell P . Human Wee1 kinase inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr15. EMBO J 1993; 12: 75–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jin P, Gu Y, Morgan DO . Role of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells. J Cell Biol 1996; 134: 963–970.

    Article  CAS  PubMed  Google Scholar 

  13. De Witt Hamer PC, Mir SE, Noske D, Van Noorden CJF, Wurdinger T . Wee1 kinase targeting combined with DNA-damaging cancer therapy catalyzes mitotic catastrophe. Clin Cancer Res 2011; 17: 4200–4207.

    Article  CAS  PubMed  Google Scholar 

  14. Hirai H, Arai T, Okada M, Nishibata T, Kobayashi M, Sakai N et al. MK-1775, a small molecule Wee1 inhibitor, enhances anti-tumor efficacy of various DNA-damaging agents, including 5-fluorouracil. Cancer Biol Ther 2010; 9: 514–522.

    Article  CAS  PubMed  Google Scholar 

  15. Rajeshkumar NV, De Oliveira E, Ottenhof N, Watters J, Brooks D, Demuth T et al. MK-1775, a potent Wee1 inhibitor, synergizes with gemcitabine to achieve tumor regressions, selectively in p53-deficient pancreatic cancer xenografts. Clin Cancer Res 2011; 17: 2799–2806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu Q, Chang JW, Wang J, Kang SA, Thoreen CC, Markhard A et al. Discovery of 1-(4-(4-propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benzo[h][1,6]naphthyridin-2(1H)-one as a highly potent, selective mammalian target of rapamycin (mTOR) inhibitor for the treatment of cancer. J Med Chem 2010; 53: 7146–7155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Matsuo Y, MacLeod RA, Uphoff CC, Drexler HG, Nishizaki C, Katayama Y et al. Two acute monocytic leukemia (AML-M5a) cell lines (MOLM13 and MOLM14) with interclonal phenotypic heterogeneity showing MLL-AF9 fusion resulting from an occult chromosome insertion, ins(11;9)(q23;p22p23). Leukemia 1997; 11: 1469–1477.

    Article  CAS  PubMed  Google Scholar 

  18. Kimbrel EA, Davis TN, Bradner JE, Kung AL . In vivo pharmacodynamic imaging of proteosome inhibition. Mol Imaging 2009; 8: 140–147.

    Article  CAS  PubMed  Google Scholar 

  19. Weisberg E, Manley PW, Breitenstein W, Bruggen J, Cowan-Jacob SW, Ray A et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 2005; 7: 129–141.

    Article  CAS  PubMed  Google Scholar 

  20. Chou TC, Talalay P . Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22: 27–55.

    Article  CAS  PubMed  Google Scholar 

  21. Chen Z, Cheng K, Walton Z, Wang Y, Ebi H, Shimamura T et al. A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature 2012; 483: 613–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Omholt K, Karsberg S, Platz A, Kanter L, Ringborg U, Hansson J . Screening of N-ras codon 61 mutations in paired primary and metastatic cutaneous melanomas: mutations occur early and persist throughout tumor progression. Clin Cancer Res 2002; 8: 3468–3474.

    CAS  PubMed  Google Scholar 

  23. Arrington AK, Heinrich EL, Lee W, Duldulao M, Patel S, Sanchez J et al. Prognostic and predictive roles of KRAS mutation in colorectal cancer. Int J Mol Sci 2012; 13: 12153–12168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Laghi L, Orbetegli O, Bianchi P, Zerbi A, Di Carlo V, Boland CR et al. Common occurrence of multiple K-RAS mutations in pancreatic cancers with associated precursor lesions and in biliary cancers. Oncogene 2002; 21: 4301–4306.

    Article  CAS  PubMed  Google Scholar 

  25. Pao W, Wang TY, Riely GJ, Miller VA, Pan Q, Ladanyi M et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med 2005; 2: e17.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ward AF, Braun BS, Shannon KM . Targeting oncogenic RAS signaling in hematologic malignancies. Blood 2012; 120: 3397–3406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Karp JE, Lancet JE, Kaufmann SH et al. Clinical and biologic activity of the farnesyltransferase inhibitor R115777 in adults with refractory and relapsed acute leukemias: a phase I clinical-laboratory correlative trial. Blood 2001; 97: 3361–3369.

    Article  CAS  PubMed  Google Scholar 

  28. Downward J . Targeting RAS signaling pathways in cancer therapy. Nat Rev Cancer 2003; 3: 11–22.

    Article  CAS  PubMed  Google Scholar 

  29. Chresta CM, Davies BR, Hickson I, Harding T, Cosulich S, Chritchlow SE et al. AZD8055 is a potent, selective, and orally bioavailable ATP-competitive mammalian target of rapamycin kinase inhibitor with in vitro and in vivo antitumor activity. Cancer Res 2010; 70: 288–298.

    Article  CAS  PubMed  Google Scholar 

  30. Banerji U, Aghajanian C, Raymond E, Kurzrock R, Blanco-Codesido M, Oelmann E et al. First results from a phase I trial of AZD8055, a dual mTORC1 and mTORC2 inhibitor. J Clin Oncol 2011; 29 (suppl): abstract 3096.

    Article  Google Scholar 

  31. Yu K, Shi C, Toral-Barza L, Lucas J, Shor B, Kim JE et al. Beyond rapalog therapy: preclinical pharmacology and antitumor activity of WYE 125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2. Cancer Res 2010; 70: 621–631.

    Article  CAS  PubMed  Google Scholar 

  32. Liu Q, Wang J, Kang SA, Thoreen CC, Hur W, Ahmed T et al. Discovery of 9 (6 aminopyridin-3 yl)-1 (3-(trifluoromethyl)phenyl)benzo[h][1,6] naphthyridin 2(1H)-one (Torin 2) as a potent, selective, and orally available mammalian target of rapamycin (mTOR) inhibitor for treatment of cancer. J Med Chem 2011; 54: 1473–1480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu Q, Xu C, Kirubakaran S, Zhang X, Hur W, Liu Y et al. Characterization of Torin 2, an ATP-competitive inhibitor of mTOR, ATM, and ATR. Cancer Res 2013; 73: 2574–2586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bracho-Valdes I, Moreno-Alvarez P, Valencia-Martinez I, Robles-Molina E, Chavez-Vargas L, Vazquez-Prado J . mTORC1- and mTORC2-interacting proteins keep their multifunctional partners focused. IUBMB Life 2011; 63: 896–914.

    Article  PubMed  Google Scholar 

  35. Zhang X, Tang N, Hadden TJ, AK Rishi . AKT, FoxO and regulation of apoptosis. Biochim Biophys Acta 2011; 1813: 1978–1986.

    Article  CAS  PubMed  Google Scholar 

  36. Proud CG . The eukaryotic initiation factor 4E-binding proteins and apoptosis. Cell Death Differ 2005; 12: 541–546.

    Article  CAS  PubMed  Google Scholar 

  37. Ducker GS, Atreya CE, Simko JP, Hom YK, Matli MR, Benes CH et al. Incomplete inhibition of phosphorylation of 4E-BP1 as a mechanism of primary resistance to ATP-competitive mTOR inhibitors. Oncogene 2014; 33: 1590–1600.

    Article  CAS  PubMed  Google Scholar 

  38. Cassinelli G, Zuco V, Gatti L, Lanzi C, Zaffaroni N, Colombo D et al. Targeting the AKT kinase to modulate survival, invasiveness and drug resistance of cancer cells. Curr Med Chem 2013; 20: 1923–1945.

    Article  CAS  PubMed  Google Scholar 

  39. Castedo M, Perfettini JL, Roumier T, Kroemer G . Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastrophe. Cell Death Differ 2002; 9: 1287–1293.

    Article  CAS  PubMed  Google Scholar 

  40. Gwinn DM, Asara JM, Shaw RJ . Raptor is phosphorylated by cdc2 during mitosis. PLoS One 2010; 5: e9197.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kreahling JM, Gemmer JY, Reed D, Letson D, Bui M, Altiok S . MK-1775 a selective Wee1 inhibitor, shows single-agent antitumor activity against sarcoma cells. Mol Cancer Ther 2012; 11: 174–182.

    Article  CAS  PubMed  Google Scholar 

  42. Guertin AD, Li J, Liu Y, Hurd MS, Schuller AG, Long B et al. Preclinical evaluation of the WEE1 inhibitor MK-1775 as single-agent anticancer therapy. Mol Cancer Ther 2013; 12: 1442–1452.

    Article  CAS  PubMed  Google Scholar 

  43. Russell MR, Levin K, Rader J, Belcastro L, Li Y, Martinez D et al. Combination therapy targeting the Chk1 and Wee1 kinases shows therapeutic efficacy in neuroblastoma. Cancer Res 2013; 73: 776–784.

    Article  CAS  PubMed  Google Scholar 

  44. Sarcar B, Kahali S, Prabhu AH, Shumway SD, Xu Y, Demuth T et al. Targeting radiation-induced G(2) checkpoint activation with the Wee-1 inhibitor MK-1775 in glioblastoma cell lines. Mol Cancer Ther 2011; 10: 2405–2414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bridges KA, Hirai H, Buser CA, Brooks C, Liu H, Buchholz TA et al. MK-1775, a novel Wee1 kinase inhibitor, radiosensitizes p53-defective human tumor cells. Clin Cancer Res 2011; 17: 5638–5648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aarts M, Sharpe R, Garcia-Murillas I, Gevensleben H, Hurd MS, Shumway SD et al. Forced mitotic entry of S-phase cells as a therapeutic strategy induced by inhibition of Wee1. Cancer Discov 2012; 2: 524–539.

    Article  CAS  PubMed  Google Scholar 

  47. Tibes R, Bogenberger JM, Chaudhuri L, Hagelstrom RT, Chow D, Buechel ME et al. RNAi screening of the kinome with cytarabine in leukemias. Blood 2012; 119: 2863–2872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ramamoorthy K, Ramesh P, Al Bahar S . Primary treatment of acute myeloid leukemia (non M3) in elderly: a review. Gulf J Oncolog 2008; 4: 19–26.

    Google Scholar 

  49. Yoshida T, Tanaka S, Mogi A, Shitara Y, Kuwano H . The clinical significance of cyclin B1 and Wee1 expression in non-small-cell lung cancer. Ann Oncol 2004; 15: 252–256.

    Article  CAS  PubMed  Google Scholar 

  50. Magnussen GI, Holm R, Emilsen E, Rosnes AK, Slipicevic A, Florenes VA . High expression of Wee1 is associated with poor disease-free survival in malignant melanoma: potential for targeted therapy. PLoS One 2012; 7: e38254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge Catherine Sypher, Carmen Da Silva, Elsy Moreno, Lia Palazzolo and Daisy Moreno for their assistance with in vivo studies. NG is supported by NIH LINCS grant HG006097. MS is supported by NIH grant CA134660.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E Weisberg or J D Griffin.

Ethics declarations

Competing interests

JDG receives research support and has a financial interest with Novartis Pharma AG. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weisberg, E., Nonami, A., Chen, Z. et al. Identification of Wee1 as a novel therapeutic target for mutant RAS-driven acute leukemia and other malignancies. Leukemia 29, 27–37 (2015). https://doi.org/10.1038/leu.2014.149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.149

This article is cited by

Search

Quick links