Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

The AAA+ ATPase RUVBL2 is a critical mediator of MLL-AF9 oncogenesis

Abstract

The most frequent chromosomal translocations in pediatric acute myeloid leukemia affect the 11q23 locus and give rise to mixed lineage leukemia (MLL) fusion genes, MLL-AF9 being the most prevalent. The MLL-AF9 fusion gene has been shown to induce leukemia in both mouse and human models. In this study, we demonstrate that leukemogenic activity of MLL-AF9 requires RUVBL2 (RuvB-like 2), an AAA+ ATPase family member that functions in a wide range of cellular processes, including chromatin remodeling and transcriptional regulation. Expression of RUVBL2 was dependent on MLL-AF9, as it increased upon immortalization of human cord blood-derived hematopoietic progenitor cells with the fusion gene and decreased following loss of fusion gene expression in conditionally immortalized mouse cells. Short hairpin RNA-mediated silencing experiments demonstrated that both the immortalized human cells and the MLL-AF9-expressing human leukemia cell line THP-1 required RUVBL2 expression for proliferation and survival. Furthermore, inhibition of RUVBL2 expression in THP-1 cells led to reduced telomerase activity and clonogenic potential. These data were confirmed with a dominant-negative Walker B-mutated RUVBL2 construct. Taken together, these data suggest the possibility of targeting RUVBL2 as a potential therapeutic strategy for MLL-AF9-associated leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Krivtsov AV, Feng Z, Armstrong SA . Transformation from committed progenitor to leukemia stem cells. Ann N Y Acad Sci 2009; 1176: 144–149.

    Article  CAS  PubMed  Google Scholar 

  2. Somervaille TCP, Cleary ML . Grist for the MLL: how do MLL oncogenic fusion proteins generate leukemia stem cells? Int J Hematol 2010; 91: 735–741.

    Article  PubMed  Google Scholar 

  3. Zuber J, Rappaport AR, Luo W, Wang E, Chen C, Vaseva AV et al. An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance. Genes Dev 2011; 25: 1628–1640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ayton PM, Cleary ML . Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev 2003; 17: 2298–2307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zeisig BB, Milne T, Garcia-Cuellar MP, Schreiner S, Martin ME, Fuchs U et al. Hoxa9 and Meis1 are key targets for MLL-ENL-mediated cellular immortalization. Mol Cell Biol 2004; 24: 617–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Horton SJ, Grier DG, McGonigle GJ, Thompson A, Morrow M, De Silva I et al. Continuous MLL-ENL expression is necessary to establish a "Hox Code" and maintain immortalization of hematopoietic progenitor cells. Cancer Res 2005; 65: 9245–9252.

    Article  CAS  PubMed  Google Scholar 

  7. Horton SJ, Walf-Vorderwulbecke V, Chatters SJ, Sebire NJ, de Boer J, Williams O . Acute myeloid leukemia induced by MLL-ENL is cured by oncogene ablation despite acquisition of complex genetic abnormalities. Blood 2009; 113: 4922–4929.

    Article  CAS  PubMed  Google Scholar 

  8. Slany RK . When epigenetics kills: MLL fusion proteins in leukemia. Hematol Oncol 2005; 23: 1–9.

    Article  CAS  PubMed  Google Scholar 

  9. Liedtke M, Cleary ML . Therapeutic targeting of MLL. Blood 2009; 113: 6061–6068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Muntean AG, Hess JL . The pathogenesis of mixed-lineage leukemia. Annu Rev Pathol 2012; 7: 283–301.

    Article  CAS  PubMed  Google Scholar 

  11. Hess JL, Bittner CB, Zeisig DT, Bach C, Fuchs U, Borkhardt A et al. c-Myb is an essential downstream target for homeobox-mediated transformation of hematopoietic cells. Blood 2006; 108: 297–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grigoletto A, Lestienne P, Rosenbaum J . The multifaceted proteins Reptin and Pontin as major players in cancer. Biochim Biophys Acta 2011; 1815: 147–157.

    CAS  PubMed  Google Scholar 

  13. Blanc JF, Lalanne C, Plomion C, Schmitter JM, Bathany K, Gion JM et al. Proteomic analysis of differentially expressed proteins in hepatocellular carcinoma developed in patients with chronic viral hepatitis C. Proteomics 2005; 5: 3778–3789.

    Article  CAS  PubMed  Google Scholar 

  14. Rousseau B, Menard L, Haurie V, Taras D, Blanc JF, Moreau-Gaudry F et al. Overexpression and role of the ATPase and putative DNA helicase RuvB-like 2 in human hepatocellular carcinoma. Hepatology 2007; 46: 1108–1118.

    Article  CAS  PubMed  Google Scholar 

  15. Maslon MM, Hrstka R, Vojtesek B, Hupp TR . A divergent substrate-binding loop within the pro-oncogenic protein anterior gradient-2 forms a docking site for Reptin. J Mol Biol 2010; 404: 418–438.

    Article  CAS  PubMed  Google Scholar 

  16. Ren J, Li W, Liu H, Yan L, Jiao W, Li D et al. Overexpression of Reptin in renal cell carcinoma contributes to tumor malignancies and its inhibition triggers senescence of cancer cells. Urol Oncol 2012; (in press).

  17. Menard L, Taras D, Grigoletto A, Haurie V, Nicou A, Dugot-Senant N et al. In vivo silencing of Reptin blocks the progression of human hepatocellular carcinoma in xenografts and is associated with replicative senescence. J Hepatol 2010; 52: 681–689.

    Article  CAS  PubMed  Google Scholar 

  18. Adler HT, Chinery R, Wu DY, Kussick SJ, Payne JM, Fornace AJ et al. Leukemic HRX fusion proteins inhibit GADD34-induced apoptosis and associate with the GADD34 and hSNF5/INI1 proteins. Mol Cell Biol 1999; 19: 7050–7060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D . Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 2002; 295: 868–872.

    Article  CAS  PubMed  Google Scholar 

  20. Petrella A, Doti I, Agosti V, Giarrusso PC, Vitale D, Bond HM et al. A 5' regulatory sequence containing two Ets motifs controls the expression of the Wiskott-Aldrich syndrome protein (WASP) gene in human hematopoietic cells. Blood 1998; 91: 4554–4560.

    CAS  PubMed  Google Scholar 

  21. Demaison C, Parsley K, Brouns G, Scherr M, Battmer K, Kinnon C et al. High-level transduction and gene expression in hematopoietic repopulating cells using a human immunodeficiency virus type 1-based lentiviral vector containing an internal spleen focus forming virus promoter. Hum Gene Ther 2002; 13: 803–813.

    Article  CAS  PubMed  Google Scholar 

  22. Woodward MJ, de Boer J, Heidorn S, Hubank M, Kioussis D, Williams O et al. Tnfaip8 is an essential gene for the regulation of glucocorticoid-mediated apoptosis of thymocytes. Cell Death Differ 2010; 17: 316–323.

    Article  CAS  PubMed  Google Scholar 

  23. Mezard C, Davies AA, Stasiak A, West SC . Biochemical properties of RuvB(D113N): a mutation in helicase motif II of the RuvB hexamer affects DNA binding and ATPase activities. J Mol Biol 1997; 271: 704–717.

    Article  CAS  PubMed  Google Scholar 

  24. Wood MA, McMahon SB, Cole MD . An ATPase/helicase complex is an essential cofactor for oncogenic transformation by c-Myc. Mol Cell 2000; 5: 321–330.

    Article  CAS  PubMed  Google Scholar 

  25. Menssen A, Hermeking H . Characterization of the c-MYC-regulated transcriptome by SAGE: identification and analysis of c-MYC target genes. Proc Natl Acad Sci USA 2002; 99: 6274–6279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim J, Woo AJ, Chu JL, Snow JW, Fujiwara Y, Kim CG et al. A Myc network accounts for similarities between embryonic stem and cancer cell transcription programs. Cell 2010; 143: 313–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Venteicher AS, Meng ZJ, Mason PJ, Veenstra TD, Artandi SE . Identification of ATPases pontin and reptin as telomerase components essential for holoenzyme assembly. Cell 2008; 132: 945–957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li W, Zeng J, Li Q, Zhao L, Liu T, Bjorkholm M et al. Reptin is required for the transcription of telomerase reverse transcriptase and over-expressed in gastric cancer. Mol Cancer 2010; 9: 132.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wei J, Wunderlich M, Fox C, Alvarez S, Cigudosa JC, Wilhelm JS et al. Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell 2008; 13: 483–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  31. Gallant P . Control of transcription by pontin and reptin. Trends Cell Biol 2007; 17: 187–192.

    Article  CAS  PubMed  Google Scholar 

  32. Etard C, Gradl D, Kunz M, Eilers M, Pontin WedlichD . and Reptin regulate cell proliferation in early Xenopus embryos in collaboration with c-Myc and Miz-1. Mech Dev 2005; 122: 545–556.

    Article  CAS  PubMed  Google Scholar 

  33. Si J, Yu X, Zhang Y, DeWille JW . Myc interacts with Max and Miz1 to repress C/EBPdelta promoter activity and gene expression. Mol Cancer 2010; 9: 92.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hoverter NP, Waterman MLA . Wnt-fall for gene regulation: repression. Sci Signal 2008; 1: pe43.

    Article  PubMed  Google Scholar 

  35. Kim JH, Kim B, Cai L, Choi HJ, Ohgi KA, Tran C et al. Transcriptional regulation of a metastasis suppressor gene by Tip60 and beta-catenin complexes. Nature 2005; 434: 921–926.

    Article  CAS  PubMed  Google Scholar 

  36. Olson LE, Tollkuhn J, Scafoglio C, Krones A, Zhang J, Ohgi KA et al. Homeodomain-mediated beta-catenin-dependent switching events dictate cell-lineage determination. Cell 2006; 125: 593–605.

    Article  CAS  PubMed  Google Scholar 

  37. Schreiner S, Birke M, Garcia-Cuellar MP, Zilles O, Greil J, Slany RK . MLL-ENL causes a reversible and myc-dependent block of myelomonocytic cell differentiation. Cancer Res 2001; 61: 6480–6486.

    CAS  PubMed  Google Scholar 

  38. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011; 478: 524–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dawson MA, Prinjha RK, Dittmann A, Giotopoulos G, Bantscheff M, Chan WI et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 2011; 478: 529–533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang YZ, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng ZH et al. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 2010; 327: 1650–1653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yeung J, Esposito MT, Gandillet A, Zeisig BB, Griessinger E, Bonnet D et al. Beta-catenin mediates the establishment and drug resistance of MLL leukemic stem cells. Cancer Cell 2010; 18: 606–618.

    Article  CAS  PubMed  Google Scholar 

  42. Artandi SE, DePinho RA . Telomeres and telomerase in cancer. Carcinogenesis 2010; 31: 9–18.

    Article  CAS  PubMed  Google Scholar 

  43. Martinez P, Blasco MA . Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Cancer 2011; 11: 161–176.

    Article  CAS  PubMed  Google Scholar 

  44. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266: 2011–2015.

    Article  CAS  PubMed  Google Scholar 

  45. Gessner A, Thomas M, Castro PG, Buchler L, Scholz A, Brummendorf TH et al. Leukemic fusion genes MLL/AF4 and AML1/MTG8 support leukemic self-renewal by controlling expression of the telomerase subunit TERT. Leukemia 2010; 24: 1751–1759.

    Article  CAS  PubMed  Google Scholar 

  46. Suzuki H, Forrest AR, van Nimwegen E, Daub CO, Balwierz PJ, Irvine KM et al. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet 2009; 41: 553–562.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from Leukaemia and Lymphoma Research, United Kingdom (Project Grant 08019 to JdeB and OW; European Visiting Fellowship 07039 to SJH), the Great Ormond Street Hospital Children’s Charity (ICH22 to HO and MM; and W1055 to VW-V) and the Medical Research Council (MRC Doctoral Training Grant to LZ), AIRC and MIUR (PRIN) funds (to GM). We are grateful to D. Trono, Lausanne and Y. Takeuchi, London, for envelope constructs, and D.C. Tkachuk, Toronto, for the MLL-AF9 cDNA. We thank Mike Hubank, Kerra Pearce and Nipurna Jina (UCL Genomics) for help with gene expression analysis, Ayad Eddaoudi (UCL ICH Flow Cytometry Facility) for providing assistance with flow cytometry and all the staff of the UCL ICH Western Laboratories for excellent animal husbandry.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J de Boer or O Williams.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osaki, H., Walf-Vorderwülbecke, V., Mangolini, M. et al. The AAA+ ATPase RUVBL2 is a critical mediator of MLL-AF9 oncogenesis. Leukemia 27, 1461–1468 (2013). https://doi.org/10.1038/leu.2013.42

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.42

Keywords

This article is cited by

Search

Quick links