Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcriptional Control and Signal Transduction

AKT collaborates with ERG and Gata1s to dysregulate megakaryopoiesis and promote AMKL

Abstract

The requirement that leukemic Gata1 mutations be present in cells harboring trisomy 21 led to the discovery that overexpression of ERG drives aberrant megakaryopoiesis. Given that constitutive PI3K/AKT signaling is a frequent component of hematologic malignancies and the relationship between AKT and Notch in this lineage, we studied the crosstalk between AKT signaling and ERG in megakaryopoiesis. We discovered that constitutive AKT signaling is associated with a dramatic increase in apoptosis of WT megakaryocytes (MKs), but that overexpression of ERG blocks AKT-induced death. We further found that Gata1 mutations protect MKs from activated AKT-induced apoptosis. As a consequence, however, the enhanced signaling inhibits differentiation of Gata1 mutant, but not WT, MKs. Gata1 mutant cells that overexpress ERG with hyperactive AKT are characterized by diminished FOXO1/3a expression and an increased dependency on the c-Jun pathway similar to that seen in acute megakaryoblastic leukemia (AMKL) cell lines, acute myeloid leukemia (AML) with knockdown of FOXO3a, or AML with expression of myristoylated Akt. Additionally, we found that the AKT allosteric inhibitor MK2206 caused reduced cell viability and proliferation of AMKL cell lines. The contribution of aberrant AKT signaling during the ontogeny of Down syndrome-transient myeloproliferative disorder/AMKL indicates that AKT is a therapeutic target in this form of AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Klusmann JH, Godinho FJ, Heitmann K, Maroz A, Koch ML, Reinhardt D et al. Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis. Genes Dev 2010; 24: 1659–1672.

    Article  CAS  Google Scholar 

  2. Malinge S, Ragu C, Della-Valle V, Pisani D, Constantinescu SN, Perez C et al. Activating mutations in human acute megakaryoblastic leukemia. Blood 2008; 112: 4220–4226.

    Article  CAS  Google Scholar 

  3. Malinge S, Izraeli S, Crispino JD . Insights into the manifestations, outcomes, and mechanisms of leukemogenesis in Down syndrome. Blood 2009; 113: 2619–2628.

    Article  CAS  Google Scholar 

  4. Roy A, Roberts I, Norton A, Vyas P . Acute megakaryoblastic leukaemia (AMKL) and transient myeloproliferative disorder (TMD) in Down syndrome: a multi-step model of myeloid leukaemogenesis. Br J Haematol 2009; 147: 3–12.

    Article  CAS  Google Scholar 

  5. Stankiewicz MJ, Crispino JD . ETS2 and ERG promote megakaryopoiesis and synergize with alterations in GATA-1 to immortalize hematopoietic progenitor cells. Blood 2009; 113: 3337–3347.

    Article  CAS  Google Scholar 

  6. Muntean AG, Crispino JD . Differential requirements for the activation domain and FOG-interaction surface of GATA-1 in megakaryocyte gene expression and development. Blood 2005; 106: 1223–1231.

    Article  CAS  Google Scholar 

  7. Kharas MG, Okabe R, Ganis JJ, Gozo M, Khandan T, Paktinat M et al. Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. Blood 2010; 115: 1406–1415.

    Article  CAS  Google Scholar 

  8. Cornejo MG, Mabialah V, Sykes SM, Khandan T, Lo Celso C, Lopez CK et al. Crosstalk between NOTCH and AKT signaling during murine megakaryocyte lineage specification. Blood 2011; 118: 1264–1273.

    Article  CAS  Google Scholar 

  9. Sykes SM, Lane SW, Bullinger L, Kalaitzidis D, Yusuf R, Saez B et al. AKT/FOXO signaling enforces reversible differentiation blockade in myeloid leukemias. Cell 2011; 146: 697–708.

    Article  CAS  Google Scholar 

  10. Li Z, Godinho FJ, Klusmann JH, Garriga-Canut M, Yu C, Orkin SH . Developmental stage-selective effect of somatically mutated leukemogenic transcription factor GATA1. Nat Genet 2005; 37: 613–619.

    Article  CAS  Google Scholar 

  11. Ng AP, Hyland CD, Metcalf D, Carmichael CL, Loughran SJ, Di Rago L et al. Trisomy of Erg is required for myeloproliferation in a mouse model of Down syndrome. Blood 2010; 115: 3966–3969.

    Article  CAS  Google Scholar 

  12. Salek-Ardakani S, Smooha G, de Boer J, Sebire NJ, Morrow M, Rainis L et al. ERG is a megakaryocytic oncogene. Cancer Res 2009; 69: 4665–4673.

    Article  CAS  Google Scholar 

  13. Tsuzuki S, Taguchi O, Seto M . Promotion and maintenance of leukemia by ERG. Blood 2011; 117: 3858–3868.

    Article  CAS  Google Scholar 

  14. Naka K, Hoshii T, Muraguchi T, Tadokoro Y, Ooshio T, Kondo Y et al. TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 2010; 463: 676–680.

    Article  CAS  Google Scholar 

  15. Chapuis N, Park S, Leotoing L, Tamburini J, Verdier F, Bardet V et al. IkappaB kinase overcomes PI3K/Akt and ERK/MAPK to control FOXO3a activity in acute myeloid leukemia. Blood 2010; 116: 4240–4250.

    Article  CAS  Google Scholar 

  16. Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 2011; 17: 1086–1093.

    Article  CAS  Google Scholar 

  17. Tothova Z, Gilliland DG . FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 2007; 1: 140–152.

    Article  CAS  Google Scholar 

  18. Walters DK, Mercher T, Gu TL, O'Hare T, Tyner JW, Loriaux M et al. Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell 2006; 10: 65–75.

    Article  CAS  Google Scholar 

  19. Gruber TA, Larson Gedman A, Zhang J, Koss CS, Marada S, Ta HQ et al. An Inv(16)(p13.3q24.3)-Encoded CBFA2T3-GLIS2 fusion protein defines an aggressive subtype of pediatric acute megakaryoblastic leukemia. Cancer Cell 2012; 22: 683–697.

    Article  CAS  Google Scholar 

  20. Malinge S, Bliss-Moreau M, Kirsammer G, Diebold L, Chlon T, Gurbuxani S et al. Increased dosage of the chromosome 21 ortholog Dyrk1a promotes megakaryoblastic leukemia in a murine model of Down syndrome. J Clin Invest 2012; 122: 948–962.

    Article  CAS  Google Scholar 

  21. Khan I, Malinge S, Crispino J . Myeloid leukemia in Down syndrome. Crit Rev Oncog 2011; 16: 25–36.

    Article  Google Scholar 

  22. Chou ST, Opalinska JB, Yao Y, Fernandes MA, Kalota A, Brooks JS et al. Trisomy 21 enhances human fetal erythro-megakaryocytic development. Blood 2008; 112: 4503–4506.

    Article  CAS  Google Scholar 

  23. Izraeli S . Trisomy 21 tilts the balance. Blood 2008; 112: 4361–4362.

    Article  CAS  Google Scholar 

  24. Mundschau G, Crispino J . GATA1s goes germline. Nat Genet 2006; 38: 741–742.

    Article  CAS  Google Scholar 

  25. Martelli AM, Chiarini F, Evangelisti C, Grimaldi C, Ognibene A, Manzoli L et al. The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin signaling network and the control of normal myelopoiesis. Histol Histopathol 2010; 25: 669–680.

    CAS  PubMed  Google Scholar 

  26. Raslova H, Baccini V, Loussaief L, Comba B, Larghero J, Debili N et al. Mammalian target of rapamycin (mTOR) regulates both proliferation of megakaryocyte progenitors and late stages of megakaryocyte differentiation. Blood 2006; 107: 2303–2310.

    Article  CAS  Google Scholar 

  27. Liu ZJ, Italiano J, Ferrer-Marin F, Gutti R, Bailey M, Poterjoy B et al. Developmental differences in megakaryocytopoiesis are associated with up-regulated TPO signaling through mTOR and elevated GATA-1 levels in neonatal megakaryocytes. Blood 2011; 117: 4106–4117.

    Article  CAS  Google Scholar 

  28. Magee JA, Ikenoue T, Nakada D, Lee JY, Guan KL, Morrison SJ . Temporal Changes in PTEN and mTORC2 regulation of hematopoietic stem cell self-renewal and leukemia suppression. Cell Stem Cell 2012; 11: 415–428.

    Article  CAS  Google Scholar 

  29. Yamazaki S, Iwama A, Takayanagi S, Morita Y, Eto K, Ema H et al. Cytokine signals modulated via lipid rafts mimic niche signals and induce hibernation in hematopoietic stem cells. Embo J 2006; 25: 3515–3523.

    Article  CAS  Google Scholar 

  30. Miyamoto K, Araki KY, Naka K, Arai F, Takubo K, Yamazaki S et al. Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 2007; 1: 101–112.

    Article  CAS  Google Scholar 

  31. Kentsis A, Look AT . Distinct and dynamic requirements for mTOR signaling in hematopoiesis and leukemogenesis. Cell Stem Cell 2012; 11: 281–282.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Thomas Mercher for plasmids and Merck for supplying MK2206 and thank the Robert H. Lurie Comprehensive Cancer Center supported Flow Cytometry Core and Cell Imaging Cores at Northwestern University. We also thank Benjamin Goldenson for assistance with CalcuSyn software calculations. This work was supported in part by the Samuel Waxman Cancer Research Foundation and a grant from the NCI (R01CA101774).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J D Crispino.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stankiewicz, M., Crispino, J. AKT collaborates with ERG and Gata1s to dysregulate megakaryopoiesis and promote AMKL. Leukemia 27, 1339–1347 (2013). https://doi.org/10.1038/leu.2013.33

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.33

Keywords

This article is cited by

Search

Quick links