Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Pim kinases phosphorylate Chk1 and regulate its functions in acute myeloid leukemia

Abstract

Phosphorylation by Akt on Ser 280 was reported to induce cytoplasmic retention and inactivation of CHK1 with consequent genetic instability in PTEN−/− cells. In acute myeloid leukemia cells carrying the FLT3-internal tandem duplication (ITD) mutation, we observed high rates of FLT3-ITD-dependent CHK1 Ser 280 phosphorylation. Pharmacological inhibition and RNA interference identified Pim1/2, not Akt, as effectors of this phosphorylation. Pim1 catalyzed Ser 280 phosphorylation in vitro and ectopic expression of Pim1/2-induced CHK1 phosphorylation. Ser 280 phosphorylation did not modify CHK1 localization, but facilitated its cell cycle and resistance functions in leukemic cells. FLT3, PIM or CHK1 inhibitors synergized with DNA-damaging agents to induce apoptosis, allowing cells to bypass the etoposide-induced G2/M arrest. Consistently, etoposide-induced CHK1-dependent phosphorylations of CDC25C on Ser 216 and histone H3 on Thr11 were decreased upon FLT3 inhibition. Accordingly, ectopic expression of CHK1 improved the resistance of FLT3-ITD cells and maintained histone H3 phosphorylation in response to DNA damage, whereas expression of unphosphorylated Ser 280Ala mutant did not. Finally, FLT3- and Pim-dependent phosphorylation of CHK1 on Ser 280 was confirmed in primary blasts from patients. These results identify a new pathway involved in the resistance of FLT3-ITD leukemic cells to genotoxic agents, and they constitute the first report of CHK1 Ser 280 regulation in myeloid malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Dai Y, Grant S . New insights into checkpoint kinase 1 in the DNA damage response signaling network. Clin Cancer Res 2010; 16: 376–383.

    Article  CAS  Google Scholar 

  2. Petermann E, Maya-Mendoza A, Zachos G, Gillespie DA, Jackson DA, Caldecott KW . Chk1 requirement for high global rates of replication fork progression during normal vertebrate S phase. Mol Cell Biol 2006; 26: 3319–3326.

    Article  CAS  Google Scholar 

  3. Petermann E, Woodcock M, Helleday T . Chk1 promotes replication fork progression by controlling replication initiation. Proc Natl Acad Sci USA 2010; 107: 16090–16095.

    Article  CAS  Google Scholar 

  4. Syljuasen RG, Sørensen CS, Hansen LT, Fugger K, Lundin C, Johansson F et al. Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage. Mol Cell Biol 2005; 25: 3553–3562.

    Article  CAS  Google Scholar 

  5. Krämer A, Mailand N, Lukas C, Syljuåsen RG, Wilkinson CJ, Nigg EA et al. Centrosome-associated Chk1 prevents premature activation of cyclin-B-Cdk1 kinase. Nat Cell Biol 2004; 6: 884–891.

    Article  Google Scholar 

  6. Zachos G, Black EJ, Walker M, Scott MT, Vagnarelli P, Earnshaw WC et al. Chk1 is required for spindle checkpoint function. Dev Cell 2007; 12: 247–260.

    Article  CAS  Google Scholar 

  7. Kasahara K, Goto H, Enomoto M, Tomono Y, Kiyono T, Inagaki M . 14-3-3gamma mediates Cdc25A proteolysis to block premature mitotic entry after DNA damage. EMBO J 2010; 29: 2802–2812.

    Article  CAS  Google Scholar 

  8. Xu N, Libertini S, Black EJ, Lao Y, Hegarat N, Walker M, Gillespie DA . Cdk-mediated phosphorylation of Chk1 is required for efficient activation and full checkpoint proficiency in response to DNA damage. Oncogene 2012; 31: 1086–1094.

    Article  CAS  Google Scholar 

  9. Enomoto M, Goto H, Tomono Y, Kasahara K, Tsujimura K, Kiyono T et al. Novel positive feedback loop between Cdk1 and Chk1 in the nucleus during G2/M transition. J Biol Chem 2009; 284: 34223–34230.

    Article  CAS  Google Scholar 

  10. King FW, Skeen J, Hay N, Shtivelman E . Inhibition of Chk1 by activated PKB/Akt. Cell Cycle 2004; 3: 634–637.

    CAS  Google Scholar 

  11. Puc J, Keniry M, Li HS, Pandita TK, Choudhury AD, Memeo L et al. Lack of PTEN sequesters CHK1 and initiates genetic instability. Cancer Cell 2005; 7: 193–204.

    Article  CAS  Google Scholar 

  12. Pabla N, Bhatt K, Dong Z . Checkpoint kinase 1 (Chk1)-short is a splice variant and endogenous inhibitor of Chk1 that regulates cell cycle and DNA damage checkpoints. Proc Natl Acad Sci USA 2012; 109: 197–202.

    Article  CAS  Google Scholar 

  13. Chung KY, Morrone G, Schuringa JJ, Wong B, Dorn DC, Moore MA . Enforced expression of an Flt3 internal tandem duplication in human CD34+ cells confers properties of self-renewal and enhanced erythropoiesis. Blood 2005; 105: 77–84.

    Article  CAS  Google Scholar 

  14. Hayakawa F, Towatari M, Kiyoi H, Tanimoto M, Kitamura T, Saito H et al. Tandem-duplicated Flt3 constitutively activates STAT5 and MAP kinase and introduces autonomous cell growth in IL-3-dependent cell lines. Oncogene 2000; 19: 624–631.

    Article  CAS  Google Scholar 

  15. Kiyoi H, Naoe T . FLT3 in human hematologic malignancies. Leuk Lymphoma 2002; 43: 1541–1547.

    Article  CAS  Google Scholar 

  16. Mizuki M, Schwable J, Steur C, Choudhary C, Agrawal S, Sargin B et al. Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations. Blood 2003; 101: 3164–3173.

    Article  CAS  Google Scholar 

  17. Stirewalt DL, Radich JP . The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer 2003; 3: 650–665.

    Article  CAS  Google Scholar 

  18. Kim KT, Baird K, Ahn JY, Meltzer P, Lilly M, Levis M et al. Pim-1 is up-regulated by constitutively activated FLT3 and plays a role in FLT3-mediated cell survival. Blood 2005; 105: 1759–1767.

    Article  CAS  Google Scholar 

  19. Grundler R, Brault L, Gasser C, Bullock AN, Dechow T, Woetzel S et al. Dissection of PIM serine/threonine kinases in FLT3-ITD-induced leukemogenesis reveals PIM1 as regulator of CXCL12-CXCR4-mediated homing and migration. J Exp Med 2009; 206: 1957–1970.

    Article  CAS  Google Scholar 

  20. Nawijn MC, Alendar A, Berns A . For better or for worse: the role of Pim oncogenes in tumorigenesis. Nat Rev Cancer 2011; 11: 23–34.

    Article  CAS  Google Scholar 

  21. Tamburini J, Green AS, Bardet V, Chapuis N, Park S, Willems L et al. Protein synthesis is resistant to rapamycin and constitutes a promising therapeutic target in acute myeloid leukemia. Blood 2009; 114: 1618–1627.

    Article  CAS  Google Scholar 

  22. Hospital MA, Green AS, Lacombe C, Mayeux P, Bouscary D, Tamburini J . The FLT3 and Pim kinases inhibitor SGI-1776 preferentially target FLT3-ITD AML cells. Blood 2012; 119: 1791–1792.

    Article  CAS  Google Scholar 

  23. Brault L, Gasser C, Bracher F, Huber K, Knapp S, Schwaller J . PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica 2010; 95: 1004–1015.

    Article  CAS  Google Scholar 

  24. Amico D, Barbui AM, Erba E, Rambaldi A, Introna M, Golay J . Differential response of human acute myeloid leukemia cells to gemtuzumab ozogamicin in vitro: role of Chk1 and Chk2 phosphorylation and caspase 3. Blood 2003; 101: 4589–4597.

    Article  CAS  Google Scholar 

  25. Sampath D, Cortes J, Estrov Z, Du M, Shi Z, Andreeff M et al. Pharmacodynamics of cytarabine alone and in combination with 7-hydroxystaurosporine (UCN-01) in AML blasts in vitro and during a clinical trial. Blood 2006; 107: 2517–2524.

    Article  CAS  Google Scholar 

  26. Didier C, Cavelier C, Quaranta M, Galcera MO, Demur C, Laurent G et al. G2/M checkpoint stringency is a key parameter in the sensitivity of AML cells to genotoxic stress. Oncogene 2008; 27: 3811–3820.

    Article  CAS  Google Scholar 

  27. Cavelier C, Didier C, Prade N, Mansat-De Mas V, Manenti S, Recher C et al. Constitutive activation of the DNA damage signaling pathway in acute myeloid leukemia with complex karyotype: potential importance for checkpoint targeting therapy. Cancer Res 2009; 69: 8652–8661.

    Article  CAS  Google Scholar 

  28. Didier C, Demur C, Grimal F, Jullien D, Manenti S, Ducommun B . Evaluation of checkpoint kinase targeting therapy in acute myeloid leukemia with complex karyotype. Cancer Biol Ther 2012; 13: 307–313.

    Article  Google Scholar 

  29. Furet P, Bold G, Meyer T, Roesel J, Guagnano V . Aromatic interactions with phenylalanine 691 and cysteine 828: a concept for FMS-like tyrosine kinase-3 inhibition. Application to the discovery of a new class of potential antileukemia agents. J Med Chem 2006; 49: 4451–4454.

    Article  CAS  Google Scholar 

  30. Shimada M, Niida H, Zineldeen DH, Tagami H, Tanaka M, Saito H, Nakanishi M . Chk1 is a histone H3 threonine 11 kinase that regulates DNA damage-induced transcriptional repression. Cell 2008; 132: 221–232.

    Article  CAS  Google Scholar 

  31. Sexauer A, Perl A, Yang X, Borowitz M, Gocke C, Rajkhowa T et al. Terminal myeloid differentiation in vivo is induced by FLT3 inhibition in FLT3/ITD AML. Blood 2012; 120: 4205–4214.

    Article  CAS  Google Scholar 

  32. Xu N, Hegarat N, Black EJ, Scott MT, Hochegger H, Gillespie DA . Akt/PKB suppresses DNA damage processing and checkpoint activation in late G2. J Cell Biol 2010; 190: 297–305.

    Article  CAS  Google Scholar 

  33. Tonic I, Yu WN, Park Y, Chen CC, Hay N . Akt activation emulates Chk1 inhibition and Bcl2 overexpression and abrogates G2 cell cycle checkpoint by inhibiting BRCA1 foci. J Biol Chem 2010; 285: 23790–23798.

    Article  CAS  Google Scholar 

  34. Li P, Goto H, Kasahara K, Matsuyama M, Wang Z, Yatabe Y et al. P90 RSK arranges Chk1 in the nucleus for monitoring of genomic integrity during cell proliferation. Mol Biol Cell 2012; 23: 1582–1592.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to Dr Cécile Demur and Professor Eric Delabesse for managing and characterization of primary samples. We also thank Dr Shuchi Agrawal-Singh (Copenhagen University) and Dr Ramon Parsons (Columbia University), for kindly providing us with the Pim and CHK1 expression plasmids respectively. We thank Fatima L’Faqihi for technical assistance at the cytometry and cell sorting facility of INSERM 1043, Toulouse. This work was supported by the Association GAEL (Gael Adolescent Espoir Leucémie), by the Institut National de la Santé et de la Recherche Médicale (INSERM), by the Centre National de la Recherche Scientifique (CNRS), by the Association pour la Recherche contre le Cancer (ARC, grant SFI20101201865), by the Institut National du Cancer (INCA, PL2008 INCA-Gov-1345), by the association Inna Biosanté, by the Laboratoire d'Excellence Toulouse Cancer LABEX TOUCAN (Integrative analysis of resistance in hematological cancers) and by the association Laurette Fugain.

Author Contributions

Ling Li Yuan is a recipient of the China Scholarship Council and of the Société Française d’Hématologie (SFH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Manenti.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, L., Green, A., Bertoli, S. et al. Pim kinases phosphorylate Chk1 and regulate its functions in acute myeloid leukemia. Leukemia 28, 293–301 (2014). https://doi.org/10.1038/leu.2013.168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.168

Keywords

This article is cited by

Search

Quick links