Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

U-2932: two clones in one cell line, a tool for the study of clonal evolution

Abstract

Genetic heterogeneity is common in tumors, explicable by the development of subclones with distinct genetic and epigenetic alterations. We describe an in vitro model for cancer heterogeneity, comprising the diffuse large B-cell lymphoma cell line U-2932 which expresses two sets of cell surface markers representing twin populations flow-sorted by CD20 vs CD38 expression. U-2932 populations were traced to subclones of the original tumor with clone-specific immunoglobulin IgVH4–39 hypermutation patterns. BCL6 was overexpressed in one subpopulation (R1), MYC in the other (R2), both clones overexpressed BCL2. According to the combined results of immunoglobulin hypermutation and cytogenetic analysis, R1 and R2 derive from a mother clone with genomic BCL2 amplification, which acquired secondary rearrangements leading to the overexpression of BCL6 (R1) or MYC (R2). Some 200 genes were differentially expressed in R1/R2 microarrays including transcriptional targets of the aberrantly expressed oncogenes. Other genes were regulated by epigenetic means as shown by DNA methylation analysis. Ectopic expression of BCL6 in R2 variously modulated new candidate target genes, confirming dual silencing and activating functions. In summary, stable retention of genetically distinct subclones in U-2932 models tumor heterogeneity in vitro permitting functional analysis of oncogenes against a syngenic background.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA . The hallmarks of cancer. Cell 2000; 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  2. Greaves M, Maley CC . Clonal evolution in cancer. Nature 2012; 481: 306–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Notta F, Mulligham CG, Wang JCY, Peoppl A, Doulatov S, Phillips LA et al. Evolution of human BCR-ABL1 lymphoblastic leukaemia—initiating cells. Nature 2011; 469: 362–367.

    Article  CAS  PubMed  Google Scholar 

  4. Anderson K, Lutz C, vanDelft FW, Bateman CM, Guo Y, Colman SM et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 2011; 469: 356–361.

    Article  CAS  PubMed  Google Scholar 

  5. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 2012; 481: 506–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Klein CA . Parallel progression of primary tumours and metastases. Nature Rev Cancer 2009; 9: 302–312.

    Article  CAS  Google Scholar 

  7. Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J et al. Tumour evolution inferred by single-cell sequencing. Nature 2011; 472: 90–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Klein U, Dalla-Favera R . Germinal centres: role in B-cell physiology and malignancy. Nature Rev Immunol 2008; 8: 22–33.

    Article  CAS  Google Scholar 

  9. Drexler HG . Guide to leukemia-lymphoma cell lines. 2nd Edn. Braunschweig, 2010.

    Google Scholar 

  10. MacLeod RA, Kaufmann M, Drexler HG . Cytogenetic harvesting of commonly used tumour cell lines. Nat Protoc 2007; 2: 372–382.

    Article  CAS  PubMed  Google Scholar 

  11. MacLeod RA, Kaufmann M, Drexler HG . Cytogenetic analysis of cancer cell lines. Methods Mol Biol 2011; 731: 57–78.

    Article  CAS  PubMed  Google Scholar 

  12. Quentmeier H, Schneider B, Röhrs S, Romani J, Zaborski M, MacLeod RAF et al. SET-NUP214 fusion in acute myeloid leukemia- and T-cell acute lymphoblastic leukemia-derived cell lines. J Hematol Oncol 2009; 2: 3.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rosenquist LAH, Forestier E, Holmberg D, Lindh J, Löfvenberg E, Roos G . Clonal rearragements in childhood and adult precursor B acute lymphoblastic leukemia: a comparative polymerase chain reaction study using multiple sets of primers. Eur J Haematol 1999; 63: 211–218.

    PubMed  Google Scholar 

  14. Peng HZ, Du MQ, Koulis A, Aiello A, Dogan A, Pan LX et al. Nonimmunoglobulin gene hypermutation in germinal center B cells. Blood 1999; 93: 2167–2172.

    CAS  PubMed  Google Scholar 

  15. Amini RM, Berglund M, Rosenquist R, von Heideman A, Lagercrantz S, Thunberg U et al. A novel B-cell line (U-2932) established from a patient with diffuse large B-cell lymphoma following Hodgkin lymphoma. Leukemia Lymphoma 2002; 43: 2179–2189.

    Article  PubMed  Google Scholar 

  16. Basso K, Dalla-Favera R . BCL6: master regulator of the germinal center reaction and key oncogene in B cell lymphomagenesis. Adv Immunol 2010; 105: 193–210.

    Article  CAS  PubMed  Google Scholar 

  17. Barrans SL, Evans PAS, O'Connor SJM, Kendall SJ, Owen RG, Haynes AP et al. The t(14;18) is associated with germinal center-derived diffuse large B-cell lymphoma and is a strong predictor of outcome. Clin Cancer Res 2003; 9: 2133–2139.

    CAS  PubMed  Google Scholar 

  18. Kobayashi T, Tsutsumi Y, Sakamoto N, Nagoshi H, Yamamoto-Sugitani M, Shimura Y et al. Double-hit lymphomas constitute a highly aggressive subgroup in diffuse large B-cell lymphomas in the era of rituximab. Jpn J Clin Oncol 2012; 42: 1035–1042.

    Article  PubMed  Google Scholar 

  19. Victora GD, Dominguez-Sola D, Holmes AB, Deroubaix S, Dalla-Favera R, Nussenzweig MC . Identification of human germinal center light and dark zone cells and their relationship to human B-cell lymphomas. Blood 2012; 120: 2240–2248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shaffer AL, Yu X, He Y, Boldrick J, Chan EP, Staudt LM . BCL-6 represses genes that function in lymphocyte differentiation, inflammation and cell cycle control. Immunity 2000; 13: 199–212.

    Article  CAS  PubMed  Google Scholar 

  21. Phan RT, Dalla-Favera R . The BCL6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature 2004; 432: 635–639.

    Article  CAS  PubMed  Google Scholar 

  22. Phan RT, Saito M, Basso K, Niu H, Dalla-Favera R . BCL6 interacts with the transcription factor Miz-1 to suppress the cyclin-dependent kinase inhibitor p21 and cell cycle arrest in germinal center B cells. Nature Immunol 2005; 6: 1054–1060.

    Article  CAS  Google Scholar 

  23. Ci W, Polo JM, Cerchietti L, Shaknovich R, Wang L, Yang SN et al. The BCL6 transcriptional program features repression of multiple oncogenes in primary B cells and is deregulated in DLBCL. Blood 2009; 113: 5536–5547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Warburg O . On the origin of cancer cells. Science 1956; 123: 309–314.

    Article  CAS  PubMed  Google Scholar 

  25. Siegmund KD, Marjoram P, Woo YJ, Tavare S, Shibata D . Inferring clonal expansion and cancer stem cell dynamics from DNA methylation patterns in colorectal cancers. Proc Natl Acad Sci USA 2009; 106: 4828–4833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jung S, Yi L, Kim J, Jeong D, Oh T, Kim CH et al. The role of vimentin as a methylation biomarker for early diagnosis of cervical cancer. Mol Cells 2011; 31: 405–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Carey JPW, Asirvatham AJ, Galm O, Ghogomu TA, Chaudhary J . Inhibitor of differentiation 4 (Id4) is a potential tumor suppressor in prostate cancer. BMC Cancer 2009; 9: 173.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Snuderl M, Fazlollahi L, Le LP, Nitta M, Zhelyazkova BH, Davicson CJ et al. Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell 2011; 20: 810–817.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mrs Karin Battmer (MHH, Hannover, Germany) for technical help in retroviral transduction experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Quentmeier.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quentmeier, H., Amini, R., Berglund, M. et al. U-2932: two clones in one cell line, a tool for the study of clonal evolution. Leukemia 27, 1155–1164 (2013). https://doi.org/10.1038/leu.2012.358

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.358

Keywords

Search

Quick links