Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myelodysplasias

The transporter ABCB7 is a mediator of the phenotype of acquired refractory anemia with ring sideroblasts

Abstract

Refractory anemia with ring sideroblasts (RARS) is characterized by mitochondrial ferritin (FTMT) accumulation and markedly suppressed expression of the iron transporter ABCB7. To test the hypothesis that ABCB7 is a key mediator of ineffective erythropoiesis of RARS, we modulated its expression in hematopoietic cells. ABCB7 up and downregulation did not influence growth and survival of K562 cells. In normal bone marrow, ABCB7 downregulation reduced erythroid differentiation, growth and colony formation, and resulted in a gene expression pattern similar to that observed in intermediate RARS erythroblasts, and in the accumulation of FTMT. Importantly, forced ABCB7 expression restored erythroid colony growth and decreased FTMT expression level in RARS CD34+ marrow cells. Mutations in the SF3B1 gene, a core component of the RNA splicing machinery, were recently identified in a high proportion of patients with RARS and 11 of the 13 RARS patients in this study carried this mutation. Interestingly, ABCB7 exon usage differed between normal bone marrow and RARS, as well as within the RARS cohort. In addition, SF3B1 silencing resulted in downregulation of ABCB7 in K562 cells undergoing erythroid differentiation. Our findings support that ABCB7 is implicated in the phenotype of acquired RARS and suggest a relation between SF3B1 mutations and ABCB7 downregulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Cazzola M, Invernizzi R, Bergamaschi G, Levi S, Corsi B, Travaglino E et al. Mitochondrial ferritin expression in erythroid cells from patients with sideroblastic anemia. Blood 2003; 101: 1996–2000.

    Article  CAS  Google Scholar 

  2. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. IARC: Lyon, 2008.

    Google Scholar 

  3. Langemeijer SM, Kuiper RP, Berends M, Knops R, Aslanyan MG, Massop M et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet 2009; 41: 838–842.

    Article  CAS  Google Scholar 

  4. Hellstrom-Lindberg E, Cazzola M . The role of JAK2 mutations in RARS and other MDS. Hematology Am Soc Hematol Educ Program 2008, 52–59.

    Article  Google Scholar 

  5. Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 2011; 478: 64–69.

    Article  CAS  Google Scholar 

  6. Malcovati L, Papaemmanuil E, Bowen DT, Boultwood J, Della Porta MG, Pascutto C et al. Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms. Blood 2011; 118: 6239–6246.

    Article  CAS  Google Scholar 

  7. Patnaik MM, Lasho TL, Hodnefield JM, Knudson RA, Ketterling RP, Garcia-Manero G et al. SF3B1 mutations are prevalent in myelodysplastic syndromes with ring sideroblasts but do not hold independent prognostic value. Blood 2012; 119: 569–572.

    Article  CAS  Google Scholar 

  8. Thol F, Kade S, Schlarmann C, Löffeld P, Morgan M, Krauter J et al. Frequency and prognostic impact of mutations in SRSF2, U2AF1 and ZRSR2 in patients with myelodysplastic syndromes. Blood 2012; 119: 3578–3584.

    Article  CAS  Google Scholar 

  9. Damm F, Thol F, Kosmider O, Kade S, Loffeld P, Dreyfus F et al. SF3B1 mutations in myelodysplastic syndromes: clinical associations and prognostic implications. Leukemia 2012; 26: 1137–1140.

    Article  CAS  Google Scholar 

  10. Visconte V, Makishima H, Jankowska A, Szpurka H, Traina F, Jerez A et al. SF3B1, a splicing factor is frequently mutated in refractory anemia with ring sideroblasts. Leukemia 2012; 26: 542–545.

    Article  CAS  Google Scholar 

  11. Hellstrom-Lindberg E, Schmidt-Mende J, Forsblom AM, Christensson B, Fadeel B, Zhivotovsky B . Apoptosis in refractory anaemia with ringed sideroblasts is initiated at the stem cell level and associated with increased activation of caspases. Br J Haematol 2001; 112: 714–726.

    Article  CAS  Google Scholar 

  12. Schmidt-Mende J, Tehranchi R, Forsblom AM, Joseph B, Christensson B, Fadeel B et al. Granulocyte colony-stimulating factor inhibits Fas-triggered apoptosis in bone marrow cells isolated from patients with refractory anemia with ringed sideroblasts. Leukemia 2001; 15: 742–751.

    Article  CAS  Google Scholar 

  13. Malcovati L, Della Porta MG, Pietra D, Boveri E, Pellagatti A, Galli A et al. Molecular and clinical features of refractory anemia with ringed sideroblasts associated with marked thrombocytosis. Blood 2009; 114: 3538–3545.

    Article  CAS  Google Scholar 

  14. Tehranchi R, Fadeel B, Forsblom AM, Christensson B, Samuelsson J, Zhivotovsky B et al. Granulocyte colony-stimulating factor inhibits spontaneous cytochrome c release and mitochondria-dependent apoptosis of myelodysplastic syndrome hematopoietic progenitors. Blood 2003; 101: 1080–1086.

    Article  CAS  Google Scholar 

  15. Tehranchi R, Invernizzi R, Grandien A, Zhivotovsky B, Fadeel B, Forsblom AM et al. Aberrant mitochondrial iron distribution and maturation arrest characterize early erythroid precursors in low-risk myelodysplastic syndromes. Blood 2005; 106: 247–253.

    Article  CAS  Google Scholar 

  16. Allikmets R, Raskind WH, Hutchinson A, Schueck ND, Dean M, Koeller DM . Mutation of a putative mitochondrial iron transporter gene (ABC7) in X-linked sideroblastic anemia and ataxia (XLSA/A). Hum Mol Genet 1999; 8: 743–749.

    Article  CAS  Google Scholar 

  17. Camaschella C . Hereditary sideroblastic anemias: pathophysiology, diagnosis, and treatment. Semin Hematol 2009; 46: 371–377.

    Article  CAS  Google Scholar 

  18. Cavadini P, Biasiotto G, Poli M, Levi S, Verardi R, Zanella I et al. RNA silencing of the mitochondrial ABCB7 transporter in HeLa cells causes an iron-deficient phenotype with mitochondrial iron overload. Blood 2007; 109: 3552–3559.

    Article  CAS  Google Scholar 

  19. Pondarre C, Antiochos BB, Campagna DR, Clarke SL, Greer EL, Deck KM et al. The mitochondrial ATP-binding cassette transporter Abcb7 is essential in mice and participates in cytosolic iron-sulfur cluster biogenesis. Hum Mol Genet 2006; 15: 953–964.

    Article  CAS  Google Scholar 

  20. Pondarre C, Campagna DR, Antiochos B, Sikorski L, Mulhern H, Abcb7 Fleming MD . the gene responsible for X-linked sideroblastic anemia with ataxia, is essential for hematopoiesis. Blood 2007; 109: 3567–3569.

    Article  CAS  Google Scholar 

  21. Nikpour M, Pellagatti A, Liu A, Karimi M, Malcovati L, Gogvadze V et al. Gene expression profiling of erythroblasts from refractory anaemia with ring sideroblasts (RARS) and effects of G-CSF. Br J Haematol 2010; 149: 844–854.

    Article  CAS  Google Scholar 

  22. Boultwood J, Pellagatti A, Nikpour M, Pushkaran B, Fidler C, Cattan H et al. The role of the iron transporter ABCB7 in refractory anemia with ring sideroblasts. PLoS One 2008; 3: e1970.

    Article  Google Scholar 

  23. Steensma DP, Hecksel KA, Porcher JC, Lasho TL . Candidate gene mutation analysis in idiopathic acquired sideroblastic anemia (refractory anemia with ringed sideroblasts). Leuk Res 2007; 31: 623–628.

    Article  CAS  Google Scholar 

  24. Persons DA, Allay JA, Allay ER, Smeyne RJ, Ashmun RA, Sorrentino BP et al. Retroviral-mediated transfer of the green fluorescent protein gene into murine hematopoietic cells facilitates scoring and selection of transduced progenitors in vitro and identification of genetically modified cells in vivo. Blood 1997; 90: 1777–1786.

    CAS  PubMed  Google Scholar 

  25. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  26. Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 2011; 469: 539–542.

    Article  CAS  Google Scholar 

  27. Li H, Durbin R . Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 2010; 26: 589–595.

    Article  Google Scholar 

  28. Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med 2011; 365: 1384–1395.

    Article  CAS  Google Scholar 

  29. Rossi S, Shimizu M, Barbarotto E, Nicoloso MS, Dimitri F, Sampath D et al. microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. Blood 2010; 116: 945–952.

    Article  CAS  Google Scholar 

  30. Graubert TA, Shen D, Ding L, Okeyo-Owuor T, Lunn CL, Shao J et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet 2012; 44: 53–57.

    Article  CAS  Google Scholar 

  31. Pellagatti A, Cazzola M, Giagounidis AA, Malcovati L, Porta MG, Killick S et al. Gene expression profiles of CD34+ cells in myelodysplastic syndromes: involvement of interferon-stimulated genes and correlation to FAB subtype and karyotype. Blood 2006; 108: 337–345.

    Article  CAS  Google Scholar 

  32. Jadersten M, Montgomery SM, Dybedal I, Porwit-MacDonald A, Hellstrom-Lindberg E . Long-term outcome of treatment of anemia in MDS with erythropoietin and G-CSF. Blood 2005; 106: 803–811.

    Article  Google Scholar 

  33. Nie G, Sheftel AD, Kim SF, Ponka P . Overexpression of mitochondrial ferritin causes cytosolic iron depletion and changes cellular iron homeostasis. Blood 2005; 105: 2161–2167.

    Article  CAS  Google Scholar 

  34. Ljung T, Back R, Hellstrom-Lindberg E . Hypochromic red blood cells in low-risk myelodysplastic syndromes: effects of treatment with hemopoietic growth factors. Haematologica 2004; 89: 1446–1453.

    CAS  PubMed  Google Scholar 

  35. Jeromin S, Haferlach T, Grossmann V, Alpermann T, Kowarsch A, Haferlach C et al. High frequencies of SF3B1 and JAK2 mutations in refractory anemia with ring sideroblasts associated with marked thrombocytosis strengthen the assignment to the category of myelodysplastic/myeloproliferative neoplasms. Haematologica 2012; (doi: 10.3324/haematol.2012.072538).

    Article  Google Scholar 

  36. Makishima H, Visconte V, Sakaguchi H, Jankowska AM, Abu Kar S, Jerez A et al. Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. Blood 2012; 119: 3203–3210.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

EHL is funded through the Swedish Cancer Society, the Scientific Research Council and the Cancer Society in Stockholm. CS and SC are the recipient of a PhD fellowship from Karolinska Institutet and CS received funding from the Research Fund at Skaraborgs Hospital. PIC is personally funded through a Wellcome Trust Senior Clinical Research Fellowship (grant reference WT088340MA). JB, MFM and JSW acknowledge funding support from Leukemia and Lymphoma Research United Kingdom. MC is funded through Fondazione Cariplo and Associazione Italiana per la Ricerca sul Cancro (AIRC, Milan, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Hellström-Lindberg.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nikpour, M., Scharenberg, C., Liu, A. et al. The transporter ABCB7 is a mediator of the phenotype of acquired refractory anemia with ring sideroblasts. Leukemia 27, 889–896 (2013). https://doi.org/10.1038/leu.2012.298

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2012.298

Keywords

This article is cited by

Search

Quick links