Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Safety, efficacy and biological predictors of response to sequential azacitidine and lenalidomide for elderly patients with acute myeloid leukemia

Abstract

Acute myeloid leukemia (AML) is a disease of the elderly. Poor outcomes with standard therapies necessitate novel approaches. Outpatient regimens sufficiently potent and well tolerated to induce remissions and enable continuation therapy may be beneficial. In this phase-1 study, we determined the maximum tolerated dose (MTD) and the efficacy for sequential azacitidine and lenalidomide as remission induction and continuation therapy in elderly, previously untreated patients. We investigated the impact on global DNA methylation and bone marrow cytokines, and sought biological predictors of response. Eighteen patients were enrolled. The MTD was not reached. Median follow-up was 8.2 months (10.3 months for survivors). Common adverse events included fatigue, injection site reactions, constipation, nausea, pruritus and febrile neutropenia. Ten patients responded (56%), and the rate of complete remissions (CRs) or CRs with incomplete recovery of blood counts for evaluable patients was 44% (7/16). The median response duration was 6.2 months. DNA demethylation and changes in bone marrow cytokines were observed; responders had a unique cytokine profile and a trend towards lower methylation levels. Sequential azacitidine and lenalidomide was well tolerated with encouraging clinical and biological activity in previously untreated elderly AML patients. This trial is registered at ClinicalTrials.gov (NCT00890929).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Juliusson G, Antunovic P, Derolf A, Lehmann S, Mollgard L, Stockelberg D et al. Age and acute myeloid leukemia: real world data on decision to treat and outcomes from the Swedish Acute Leukemia Registry. Blood 2009; 113: 4179–4187.

    Article  CAS  PubMed  Google Scholar 

  2. Dombret H, Raffoux E, Gardin C . Acute myeloid leukemia in the elderly. Semin Oncol 2008; 35: 430–438.

    Article  PubMed  Google Scholar 

  3. Appelbaum FR, Gundacker H, Head DR, Slovak ML, Willman CL, Godwin JE et al. Age and acute myeloid leukemia. Blood 2006; 107: 3481–3485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Estey EH, Keating MJ, McCredie KB, Bodey GP, Freireich EJ . Causes of initial remission induction failure in acute myelogenous leukemia. Blood 1982; 60: 309–315.

    CAS  PubMed  Google Scholar 

  5. Byrd JC, Mrozek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 2002; 100: 4325–4336.

    Article  CAS  PubMed  Google Scholar 

  6. Farag SS, Archer KJ, Mrozek K, Ruppert AS, Carroll AJ, Vardiman JW et al. Pretreatment cytogenetics add to other prognostic factors predicting complete remission and long-term outcome in patients 60 years of age or older with acute myeloid leukemia: results from Cancer and Leukemia Group B 8461. Blood 2006; 108: 63–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deeg HJ, Sandmaier BM . Who is fit for allogeneic transplantation? Blood 2010; 116: 4762–4770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baylin SB . DNA methylation and gene silencing in cancer. Nat Clin Pract Oncol 2005; 2 (Suppl 1): S4–11.

    Article  CAS  PubMed  Google Scholar 

  9. Rice KL, Hormaeche I, Licht JD . Epigenetic regulation of normal and malignant hematopoiesis. Oncogene 2007; 26: 6697–6714.

    Article  CAS  PubMed  Google Scholar 

  10. Issa JP . Aging, DNA methylation and cancer. Crit Rev Oncol Hematol 1999; 32: 31–43.

    Article  CAS  PubMed  Google Scholar 

  11. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Gattermann N, Germing U et al. Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J Clin Oncol 2010; 28: 562–569.

    Article  CAS  PubMed  Google Scholar 

  12. Sudan N, Rossetti JM, Shadduck RK, Latsko J, Lech JA, Kaplan RB et al. Treatment of acute myelogenous leukemia with outpatient azacitidine. Cancer 2006; 107: 1839–1843.

    Article  CAS  PubMed  Google Scholar 

  13. Kotla V, Goel S, Nischal S, Heuck C, Vivek K, Das B et al. Mechanism of action of lenalidomide in hematological malignancies. J Hematol Oncol 2009; 2: 36.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wei S, Chen X, Rocha K, Epling-Burnette PK, Djeu JY, Liu Q et al. A critical role for phosphatase haplodeficiency in the selective suppression of deletion 5q MDS by lenalidomide. Proc Natl Acad Sci USA 2009; 106: 12974–12979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pellagatti A, Jadersten M, Forsblom AM, Cattan H, Christensson B, Emanuelsson EK et al. Lenalidomide inhibits the malignant clone and up-regulates the SPARC gene mapping to the commonly deleted region in 5q- syndrome patients. Proc Natl Acad Sci USA 2007; 104: 11406–11411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gorgun G, Calabrese E, Soydan E, Hideshima T, Perrone G, Bandi M et al. Immunomodulatory effects of lenalidomide and pomalidomide on interaction of tumor and bone marrow accessory cells in multiple myeloma. Blood 2010; 116: 3227–3237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blum W, Klisovic RB, Becker H, Yang X, Rozewski DM, Phelps MA et al. Dose escalation of lenalidomide in relapsed or refractory acute leukemias. J Clin Oncol 2010; 28: 4919–4925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fehniger TA, Uy GL, Trinkaus K, Nelson AD, Demland J, Abboud CN et al. A phase 2 study of high-dose lenalidomide as initial therapy for older patients with acute myeloid leukemia. Blood 2011; 117: 1828–1833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Escoubet-Lozach L, Lin IL, Jensen-Pergakes K, Brady HA, Gandhi AK, Schafer PH et al. Pomalidomide and lenalidomide induce p21 WAF-1 expression in both lymphoma and multiple myeloma through a LSD1-mediated epigenetic mechanism. Cancer Res 2009; 69: 7347–7356.

    Article  CAS  PubMed  Google Scholar 

  20. Sekeres MA, List AF, Cuthbertson D, Paquette R, Ganetzky R, Latham D et al. Phase I combination trial of lenalidomide and azacitidine in patients with higher-risk myelodysplastic syndromes. J Clin Oncol 2010; 28: 2253–2258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Storer BE . Design and analysis of phase I clinical trials. Biometrics 1989; 45: 925–937.

    Article  CAS  PubMed  Google Scholar 

  22. National Cancer Institute. Common Terminology Criteria for Adverse Events v3.0 (CTCAE). Bethesda, MD, 2006.

  23. Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010; 115: 453–474.

    Article  PubMed  Google Scholar 

  24. Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 2000; 96: 4075–4083.

    CAS  PubMed  Google Scholar 

  25. Abdel-Wahab O, Mullally A, Hedvat C, Garcia-Manero G, Patel J, Wadleigh M et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 2009; 114: 144–147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Noguera NI, Ammatuna E, Zangrilli D, Lavorgna S, Divona M, Buccisano F et al. Simultaneous detection of NPM1 and FLT3-ITD mutations by capillary electrophoresis in acute myeloid leukemia. Leukemia 2005; 19: 1479–1482.

    Article  CAS  PubMed  Google Scholar 

  27. Ahn JY, Seo K, Weinberg O, Boyd SD, Arber DA . A comparison of two methods for screening CEBPA mutations in patients with acute myeloid leukemia. J Mol Diagn 2009; 11: 319–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Horbinski C, Kofler J, Kelly LM, Murdoch GH, Nikiforova MN . Diagnostic use of IDH1/2 mutation analysis in routine clinical testing of formalin-fixed, paraffin-embedded glioma tissues. J Neuropathol Exp Neurol 2009; 68: 1319–1325.

    Article  CAS  PubMed  Google Scholar 

  29. Khulan B, Thompson RF, Ye K, Fazzari MJ, Suzuki M, Stasiek E et al. Comparative isoschizomer profiling of cytosine methylation: the HELP assay. Genome Res 2006; 16: 1046–1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 2010; 17: 13–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. AML Score, Available at http://www.aml-score.org/ (accessed 12 February 2011).

  32. Krug U, Rollig C, Koschmieder A, Heinecke A, Sauerland MC, Schaich M et al. Complete remission and early death after intensive chemotherapy in patients aged 60 years or older with acute myeloid leukaemia: a web-based application for prediction of outcomes. Lancet 2010; 376: 2000–2008.

    Article  CAS  PubMed  Google Scholar 

  33. Silverman LR, Fenaux P, Mufti GJ, Santini V, Hellstrom-Lindberg E, Gattermann N et al. Continued azacitidine therapy beyond time of first response improves quality of response in patients with higher-risk myelodysplastic syndromes. Cancer 2011; 117: 2697–2702.

    Article  CAS  PubMed  Google Scholar 

  34. Sekeres MA, O’Keefe C, List AF, Paulic K, Afable II M, Englehaupt R et al. Demonstration of additional benefit in adding lenalidomide to azacitidine in patients with higher-risk myelodysplastic syndromes. Am J Hematol 2011; 86: 102–103.

    Article  PubMed  Google Scholar 

  35. Sekeres MA, List A . Immunomodulation in myelodysplastic syndromes. Best Pract Res Clin Haematol 2006; 19: 757–767.

    Article  CAS  PubMed  Google Scholar 

  36. Kornblau SM, McCue D, Singh N, Chen W, Estrov Z, Coombes KR . Recurrent expression signatures of cytokines and chemokines are present and are independently prognostic in acute myelogenous leukemia and myelodysplasia. Blood 2010; 116: 4251–4261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Graf M, Hecht K, Reif S, Pelka-Fleischer R, Pfister K, Schmetzer H . Expression and prognostic value of hemopoietic cytokine receptors in acute myeloid leukemia (AML): implications for future therapeutical strategies. Eur J Haematol 2004; 72: 89–106.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a research funding from Celgene who provided lenalidomide, but did not participate in the design and conduct of the study, collection, management, analysis or interpretation of the data, or preparation or approval of the manuscript. DAP was supported by a Leukemia and Lymphoma Society Career Development Award, an ASCO Young Investigator Award, an ASH research training award and a NIH/NCRR CTSA KL2 award #RR025743. The Stanford University Institute for Immunity, Transplantation and Infection assisted with cytokine data interpretation, and Holden Maecker and Yael Rosenberg in the Stanford Human Immune Monitoring Center performed the Luminex assays.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D A Pollyea or B C Medeiros.

Ethics declarations

Competing interests

BCM and ML receive research funds from Celgene. BCM receives consultation funds from Celgene.

Additional information

Supplementary information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollyea, D., Kohrt, H., Gallegos, L. et al. Safety, efficacy and biological predictors of response to sequential azacitidine and lenalidomide for elderly patients with acute myeloid leukemia. Leukemia 26, 893–901 (2012). https://doi.org/10.1038/leu.2011.294

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.294

Keywords

This article is cited by

Search

Quick links