Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

Sorafenib induces cell death in chronic lymphocytic leukemia by translational downregulation of Mcl-1

Abstract

Chronic lymphocytic leukemia (CLL) has a high prevalence in western countries and remains incurable to date. Here, we provide evidence that the multikinase inhibitor sorafenib induces apoptosis in primary CLL cells. This strong pro-apoptotic effect is not restricted to any subgroup of patients, based on Binet stage and the expression of ZAP70 or CD38. Mechanistically, sorafenib-induced cell death is preceded by a rapid downregulation of Mcl-1 through the inhibition of protein translation. Subsequently, the cell intrinsic apoptotic pathway is activated, indicated by destabilization of the mitochondrial membrane potential and activation of caspase-3 and -9. In contrast to sorafenib, the monoclonal vascular epidermal growth factor (VEGF)-antibody bevacizumab failed to induce apoptosis in CLL cells, suggesting that sorafenib induces cell death irrespectively of VEGF signalling. Notably, although sorafenib inhibits phosphorylation of the Scr-kinase Lck, knock-down of Lck did not induce apoptosis in CLL cells. Of note, the pro-apoptotic effect of sorafenib is not restricted to cell-cycle arrested cells, but is also maintained in proliferating CLL cells. In addition, we provide evidence that sorafenib can overcome drug resistance in CLL cells protected by microenvironmental signals from stromal cells. Conclusively, sorafenib is highly active in CLL and may compose a new therapeutic option for patients who relapse after immunochemotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Wiestner A, Rosenwald A, Barry TS, Wright G, Davis RE, Henrickson SE et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 2003; 101: 4944–4951.

    Article  CAS  PubMed  Google Scholar 

  2. Dancescu M, Rubio-Trujillo M, Biron G, Bron D, Delespesse G, Sarfati M . Interleukin 4 protects chronic lymphocytic leukemic B cells from death by apoptosis and upregulates Bcl-2 expression. J Exp Med 1992; 176: 1319–1326.

    Article  CAS  PubMed  Google Scholar 

  3. Pepper C, Bentley P, Hoy T . Regulation of clinical chemoresistance by bcl-2 and bax oncoproteins in B-cell chronic lymphocytic leukaemia. Br J Haematol 1996; 95: 513–517.

    Article  CAS  PubMed  Google Scholar 

  4. Awan FT, Kay NE, Davis ME, Wu W, Geyer SM, Leung N et al. Mcl-1 expression predicts progression-free survival in chronic lymphocytic leukemia patients treated with pentostatin, cyclophosphamide, and rituximab. Blood 2009; 113: 535–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pepper C, Lin TT, Pratt G, Hewamana S, Brennan P, Hiller L et al. Mcl-1 expression has in vitro and in vivo significance in chronic lymphocytic leukemia and is associated with other poor prognostic markers. Blood 2008; 112: 3807–3817.

    Article  CAS  PubMed  Google Scholar 

  6. Chen H, Treweeke AT, West DC, Till KJ, Cawley JC, Zuzel M et al. In vitro and in vivo production of vascular endothelial growth factor by chronic lymphocytic leukemia cells. Blood 2000; 96: 3181–3187.

    CAS  PubMed  Google Scholar 

  7. Ferrajoli A, Manshouri T, Estrov Z, Keating MJ, O’Brien S, Lerner S et al. High levels of vascular endothelial growth factor receptor-2 correlate with shortened survival in chronic lymphocytic leukemia. Clin Cancer Res 2001; 7: 795–799.

    CAS  PubMed  Google Scholar 

  8. Kay NE, Bone ND, Tschumper RC, Howell KH, Geyer SM, Dewald GW et al. B-CLL cells are capable of synthesis and secretion of both pro- and anti-angiogenic molecules. Leukemia 2002; 16: 911–919.

    Article  CAS  PubMed  Google Scholar 

  9. Bairey O, Boycov O, Kaganovsky E, Zimra Y, Shaklai M, Rabizadeh E . All three receptors for vascular endothelial growth factor (VEGF) are expressed on B-chronic lymphocytic leukemia (CLL) cells. Leuk Res 2004; 28: 243–248.

    Article  CAS  PubMed  Google Scholar 

  10. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 2007; 356: 125–134.

    Article  CAS  PubMed  Google Scholar 

  11. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008; 359: 378–390.

    Article  CAS  PubMed  Google Scholar 

  12. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004; 64: 7099–7109.

    Article  CAS  PubMed  Google Scholar 

  13. Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M . Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 2008; 7: 3129–3140.

    Article  CAS  PubMed  Google Scholar 

  14. Rahmani M, Davis EM, Bauer C, Dent P, Grant S . Apoptosis induced by the kinase inhibitor BAY 43-9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation. J Biol Chem 2005; 280: 35217–35227.

    Article  CAS  PubMed  Google Scholar 

  15. Keating MJ, O’Brien S, Albitar M, Lerner S, Plunkett W, Giles F et al. Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. J Clin Oncol 2005; 23: 4079–4088.

    Article  CAS  PubMed  Google Scholar 

  16. Kusadasi N, Oostendorp RA, Koevoet WJ, Dzierzak EA, Ploemacher RE . Stromal cells from murine embryonic aorta-gonad-mesonephros region, liver and gut mesentery expand human umbilical cord blood-derived CAFC(week6) in extended long-term cultures. Leukemia 2002; 16: 1782–1790.

    Article  CAS  PubMed  Google Scholar 

  17. Oostendorp RA, Harvey KN, Kusadasi N, de Bruijn MF, Saris C, Ploemacher RE et al. Stromal cell lines from mouse aorta-gonads-mesonephros subregions are potent supporters of hematopoietic stem cell activity. Blood 2002; 99: 1183–1189.

    Article  CAS  PubMed  Google Scholar 

  18. Strumberg D, Richly H, Hilger RA, Schleucher N, Korfee S, Tewes M et al. Phase I clinical and pharmacokinetic study of the Novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol 2005; 23: 965–972.

    Article  CAS  PubMed  Google Scholar 

  19. zum Büschenfelde CM, Wagner M, Lutzny G, Oelsner M, Feuerstacke Y, Decker T et al. Recruitment of PKC-betaII to lipid rafts mediates apoptosis-resistance in chronic lymphocytic leukemia expressing ZAP-70. Leukemia 2010; 24: 141–152.

    Article  PubMed  Google Scholar 

  20. Sandler A, Gray R, Perry MC, Brahmer J, Schiller JH, Dowlati A et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 2006; 355: 2542–2550.

    Article  CAS  PubMed  Google Scholar 

  21. Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 2004; 116: 855–867.

    Article  CAS  PubMed  Google Scholar 

  22. Barragan M, Bellosillo B, Campas C, Colomer D, Pons G, Gil J . Involvement of protein kinase C and phosphatidylinositol 3-kinase pathways in the survival of B-cell chronic lymphocytic leukemia cells. Blood 2002; 99: 2969–2976.

    Article  CAS  PubMed  Google Scholar 

  23. Zhao W, Gu YH, Song R, Qu BQ, Xu Q . Sorafenib inhibits activation of human peripheral blood T cells by targeting LCK phosphorylation. Leukemia 2008; 22: 1226–1233.

    Article  CAS  PubMed  Google Scholar 

  24. Majolini MB, D’Elios MM, Galieni P, Boncristiano M, Lauria F, Del Prete G et al. Expression of the T-cell-specific tyrosine kinase Lck in normal B-1 cells and in chronic lymphocytic leukemia B cells. Blood 1998; 91: 3390–3396.

    CAS  PubMed  Google Scholar 

  25. Herrant M, Jacquel A, Marchetti S, Belhacene N, Colosetti P, Luciano F et al. Cleavage of Mcl-1 by caspases impaired its ability to counteract Bim-induced apoptosis. Oncogene 2004; 23: 7863–7873.

    Article  CAS  PubMed  Google Scholar 

  26. Caligaris-Cappio F, Ghia P . Novel insights in chronic lymphocytic leukemia: are we getting closer to understanding the pathogenesis of the disease? J Clin Oncol 2008; 26: 4497–4503.

    Article  CAS  PubMed  Google Scholar 

  27. Granziero L, Ghia P, Circosta P, Gottardi D, Strola G, Geuna M et al. Survivin is expressed on CD40 stimulation and interfaces proliferation and apoptosis in B-cell chronic lymphocytic leukemia. Blood 2001; 97: 2777–2783.

    Article  CAS  PubMed  Google Scholar 

  28. Decker T, Schneller F, Sparwasser T, Tretter T, Lipford GB, Wagner H et al. Immunostimulatory CpG-oligonucleotides cause proliferation, cytokine production, and an immunogenic phenotype in chronic lymphocytic leukemia B cells. Blood 2000; 95: 999–1006.

    CAS  PubMed  Google Scholar 

  29. Decker T, Schneller F, Hipp S, Miething C, Jahn T, Duyster J et al. Cell cycle progression of chronic lymphocytic leukemia cells is controlled by cyclin D2, cyclin D3, cyclin-dependent kinase (cdk) 4 and the cdk inhibitor p27. Leukemia 2002; 16: 327–334.

    Article  CAS  PubMed  Google Scholar 

  30. Yu C, Friday BB, Lai JP, Yang L, Sarkaria J, Kay NE et al. Cytotoxic synergy between the multikinase inhibitor sorafenib and the proteasome inhibitor bortezomib in vitro: induction of apoptosis through Akt and c-Jun NH2-terminal kinase pathways. Mol Cancer Ther 2006; 5: 2378–2387.

    Article  CAS  PubMed  Google Scholar 

  31. Chen L, Widhopf G, Huynh L, Rassenti L, Rai KR, Weiss A et al. Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia. Blood 2002; 100: 4609–4614.

    Article  CAS  PubMed  Google Scholar 

  32. Gobessi S, Laurenti L, Longo PG, Sica S, Leone G, Efremov DG . ZAP-70 enhances B-cell-receptor signaling despite absent or inefficient tyrosine kinase activation in chronic lymphocytic leukemia and lymphoma B cells. Blood 2007; 109: 2032–2039.

    Article  CAS  PubMed  Google Scholar 

  33. Veronese L, Tournilhac O, Verrelle P, Davi F, Dighiero G, Chautard E et al. Strong correlation between VEGF and MCL-1 mRNA expression levels in B-cell chronic lymphocytic leukemia. Leuk Res 2009; 33: 1623–1626.

    Article  CAS  PubMed  Google Scholar 

  34. Farahani M, Treweeke AT, Toh CH, Till KJ, Harris RJ, Cawley JC et al. Autocrine VEGF mediates the antiapoptotic effect of CD154 on CLL cells. Leukemia 2005; 19: 524–530.

    Article  CAS  PubMed  Google Scholar 

  35. Paesler J, Gehrke I, Gandhirajan RK, Filipovich A, Hertweck M, Erdfelder F et al. The vascular endothelial growth factor receptor tyrosine kinase inhibitors vatalanib and pazopanib potently induce apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo. Clin Cancer Res 2010; 16: 3390–3398.

    Article  CAS  PubMed  Google Scholar 

  36. Ho CL, Hsu LF, Phyliky RL, Li CY . Autocrine expression of platelet-derived growth factor B in B cell chronic lymphocytic leukemia. Acta Haematol 2005; 114: 133–140.

    Article  CAS  PubMed  Google Scholar 

  37. Ding W, Knox TR, Tschumper RC, Wu W, Schwager SM, Boysen JC et al. Platelet derived growth factor (PDGF)—PDGF receptor interaction activates bone marrow derived mesenchymal stromal cells derived from chronic lymphocytic leukemia: implications for an angiogenic switch. Blood 2010; 116: 2984–2993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schmid C, Isaacson PG . Proliferation centres in B-cell malignant lymphoma, lymphocytic (B-CLL): an immunophenotypic study. Histopathology 1994; 24: 445–451.

    Article  CAS  PubMed  Google Scholar 

  39. Messmer BT, Messmer D, Allen SL, Kolitz JE, Kudalkar P, Cesar D et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest 2005; 115: 755–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Clark JW, Eder JP, Ryan D, Lathia C, Lenz HJ . Safety and pharmacokinetics of the dual action Raf kinase and vascular endothelial growth factor receptor inhibitor, BAY 43-9006, in patients with advanced, refractory solid tumors. Clin Cancer Res 2005; 11: 5472–5480.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

SH, TD, CMzB and CP provided experimental concept and planned experiments. MO, MW, TK and GL performed experiments and analyzed data. CLL/co-culturing experiments were done in collaboration with RO and BS. IR wrote the paper, analyzed data and provided experimental concept. This work was supported by grants from the Deutsche Forschungsgemeinschaft (DFG) (SFB TRR 54 TP C03) to IR and (DFG ME 1913/3-1) to CMzB and (DFG OO8/5-1 and OO8/2-3) to RO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Ringshausen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huber, S., Oelsner, M., Decker, T. et al. Sorafenib induces cell death in chronic lymphocytic leukemia by translational downregulation of Mcl-1. Leukemia 25, 838–847 (2011). https://doi.org/10.1038/leu.2011.2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.2

Keywords

This article is cited by

Search

Quick links