Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Leading Article
  • Published:

Comprehensive array CGH of normal karyotype myelodysplastic syndromes reveals hidden recurrent and individual genomic copy number alterations with prognostic relevance

Abstract

About 40% of patients with myelodysplastic syndromes (MDSs) present with a normal karyotype, and they are facing different courses of disease. To advance the biological understanding and to find molecular prognostic markers, we performed a high-resolution oligonucleotide array study of 107 MDS patients (French American British) with a normal karyotype and clinical follow-up through the Duesseldorf MDS registry. Recurrent hidden deletions overlapping with known cytogenetic aberrations or sites of known tumor-associated genes were identified in 4q24 (TET2, 2x), 5q31.2 (2x), 7q22.1 (3x) and 21q22.12 (RUNX1, 2x). One patient with a 7q22.1 deletion had an additional 5q31.2 deletion of the acute myeloid leukemia/MDS region, the smallest deletion identified so far and including the putative tumor suppressor (ts) genes, EGR1 and CTNNA1. One TET2 deletion was homozygous and one heterozygous, with a missense mutation in the remaining allele, further supporting its role as a ts gene. Besides these recurrent alterations, additional individual imbalances were found in 34 cases; in total, 42/107 (39%) cases had genomic imbalances. These patients had an inferior survival as compared with the rest of the patients (P=0.002). This study emphasizes the heterogeneity of MDS, but points to interesting genes that may have diagnostic and prognostic impact.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. Brunning RS, Orazi A, Germing U, LeBeau MM, Porwit A, Baumann I et al. Myelodysplastic syndromes/neoplasms, overview. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW (eds). WHO Classification of Tumours of Haematopoietic and Lympoid Tissues, 4th edn. IARC Press: Lyon, France, 2008, pp 88–93.

    Google Scholar 

  2. Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol 1982; 51: 189–199.

    Article  CAS  PubMed  Google Scholar 

  3. Malcovati L, Germing U, Kuendgen A, Della Porta MG, Pascutto C, Invernizzi R et al. Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes. J Clin Oncol 2007; 25: 3503–3510.

    Article  PubMed  Google Scholar 

  4. Paulsson K, Heidenblad M, Strömbeck B, Staaf J, Jönsson G, Borg A et al. High-resolution genome-wide array-based comparative genome hybridization reveals cryptic chromosome changes in AML and MDS cases with trisomy 8 as the sole cytogenetic aberration. Leukemia 2006; 20: 840–846.

    Article  CAS  PubMed  Google Scholar 

  5. O’Keefe CL, Tiu R, Gondek LP, Powers J, Theil KS, Kalaycio M et al. High-resolution genomic arrays facilitate detection of novel cryptic chromosomal lesions in myelodysplastic syndromes. Exp Hematol 2007; 35: 240–251.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Starczynowski DT, Vercauteren S, Telenius A, Sung S, Tohyama K, Brooks-Wilson A et al. High-resolution whole genome tiling path array CGH analysis of CD34+ cells from patients with low-risk myelodysplastic syndromes reveals cryptic copy number alterations and predicts overall and leukemia-free survival. Blood 2008; 112: 3412–3424.

    Article  CAS  PubMed  Google Scholar 

  7. Evers C, Beier M, Poelitz A, Hildebrandt B, Servan K, Drechsler M et al. Molecular definition of chromosome arm 5q deletion end points and detection of hidden aberrations in patients with myelodysplastic syndromes and isolated del(5q) using oligonucleotide array CGH. Genes Chromosomes Cancer 2007; 46: 1119–1128.

    Article  CAS  PubMed  Google Scholar 

  8. Mohamedali A, Gäken J, Twine NA, Ingram W, Westwood N, Lea NC et al. Prevalence and prognostic significance of allelic imbalance by single-nucleotide polymorphism analysis in low-risk myelodysplastic syndromes. Blood 2007; 110: 3365–3373.

    Article  CAS  PubMed  Google Scholar 

  9. Gondek LP, Haddad AS, O′Keefe CL, Tiu R, Wlodarski MW, Sekeres MA et al. Detection of cryptic chromosomal lesions including acquired segmental uniparental disomy in advanced and low-risk myelodysplastic syndromes. Exp Hematol 2007; 35: 1728–1738.

    Article  CAS  PubMed  Google Scholar 

  10. Heinrichs S, Kulkarni RV, Bueso-Ramos CE, Levine RL, Loh ML, Li C et al. Accurate detection of uniparental disomy and microdeletions by SNP array analysis in myelodysplastic syndromes with normal cytogenetics. Leukemia 2009; 23: 1605–1613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Trolet J, Hupé P, Huon I, Lebigot I, Decraene C, Delattre O et al. Genomic profiling and identification of high-risk uveal melanoma by array CGH analysis of primary tumors and liver metastases. Invest Ophthalmol Vis Sci 2009; 50: 2572–2580.

    Article  PubMed  Google Scholar 

  12. Gelsi-Boyer V, Trouplin V, Adélaïde J, Bonansea J, Cervera N, Carbuccia N et al. Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol 2009; 145: 788–800.

    Article  CAS  PubMed  Google Scholar 

  13. Abdel-Wahab O, Mullally A, Hedvat C, Garcia-Manero G, Patel J, Wadleigh M et al. Genetic characterization of TET1, TET2, and TET3 alterations in myeloid malignancies. Blood 2009; 114: 144–147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wagner LA, Christensen CJ, Dunn DM, Spangrude GJ, Georgelas A, Kelley L et al. EGO, a novel, noncoding RNA gene, regulates eosinophil granule protein transcript expression. Blood 2007; 109: 5191–5198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Del Mare S, Salah Z, Aqeilan RI . WWOX: its genomics, partners, and functions. J Cell Biochem 2009; 108: 737–745.

    Article  CAS  PubMed  Google Scholar 

  16. van Barjesteh Waalwijk Doorn-Khosrovani S, Erpelinck C, van Putten WLJ, Valk PJM, van der Poel-van de Luytgaarde S, Hack R et al. High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood 2003; 101: 837–845.

    Article  Google Scholar 

  17. Saha S, Guillily MD, Ferree A, Lanceta J, Chan D, Ghosh J et al. LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans. J Neurosci 2009; 29: 9210–9218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jankowska AM, Szpurka H, Tiu RV, Makishima H, Afable M, Huh J et al. Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood 2009; 113: 6403–6410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Langemeijer SMC, Kuiper RP, Berends M, Knops R, Aslanyan MG, Massop M et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet 2009; 41: 838–842.

    Article  CAS  PubMed  Google Scholar 

  20. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Massé A et al. Mutation in TET2 in myeloid cancers. N Engl J Med 2009; 360: 2289–2301.

    Article  PubMed  Google Scholar 

  21. Smith AE, Mohamedali AM, Kulasekararaj A, Lim Z, Gäken J, Lea NC et al. Next-generation sequencing of the TET2 gene in 355 MDS and CMML patients reveals low abundance mutant clones with early origins, but indicates no definite prognostic value. Blood 2010; 116: 3923–3932.

    Article  CAS  PubMed  Google Scholar 

  22. Kosmider O, Gelsi-Boyer V, Cheok M, Grabar S, Della-Valle V, Picard F et al. TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs). Blood 2009; 114: 3285–3291.

    Article  CAS  PubMed  Google Scholar 

  23. Liu TX, Becker MW, Jelinek J, Wu W, Deng M, Mikhalkevich N et al. Chromosome 5q deletion and epigenetic suppression of the gene encoding alpha-catenin (CTNNA1) in myeloid cell transformation. Nat Med 2007; 13: 78–83.

    Article  PubMed  Google Scholar 

  24. Joslin JM, Fernald AA, Tennant TR, Davis EM, Kogan SC, Anastasi J et al. Haploinsufficiency of EGR1, a candidate gene in the del(5q), leads to the development of myeloid disorders. Blood 2007; 110: 719–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xie H, Hu Z, Chyna B, Horrigan SK, Westbrook CA . Human mortalin (HSPA9): a candidate for the myeloid leukemia tumor suppressor gene on 5q31. Leukemia 2000; 14: 2128–2134.

    Article  CAS  PubMed  Google Scholar 

  26. Ohtsuka R, Abe Y, Fujii T, Yamamoto M, Nishimura J, Takayanagi R et al. Mortalin is a novel mediator of erythropoietin signaling. Eur J Haematol 2007; 79: 114–125.

    Article  CAS  PubMed  Google Scholar 

  27. Hu Z, Gomes I, Horrigan SK, Kravarusic J, Mar B, Arbieva Z et al. A novel nuclear protein, 5qNCA (LOC51780) is a candidate for the myeloid leukemia tumor suppressor gene on chromosome 5 band q31. Oncogene 2001; 20: 6946–6954.

    Article  CAS  PubMed  Google Scholar 

  28. Graubert TA, Payton MA, Shao J, Walgren RA, Monahan RS, Frater JL et al. Integrated genomic analysis implicates haploinsufficiency of multiple chromosome 5q31.2 genes in de novo myelodysplastic syndromes pathogenesis. PLoS ONE 2009; 4: e4583.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wei S, Chen X, Rocha K, Epling-Burnette PK, Djeu JY, Liu Q et al. A critical role for phosphatase haplodeficiency in the selective suppression of deletion 5q MDS by lenalidomide. Proc Natl Acad Sci USA 2009; 106: 12974–12979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fischer K, Fröhling S, Scherer SW, McAllister Brown J, Scholl C, Stilgenbauer S et al. Molecular cytogenetic delineation of deletions and translocations involving chromosome band 7q22 in myeloid leukemias. Blood 1997; 89: 2036–2041.

    CAS  PubMed  Google Scholar 

  31. Tosi S, Scherer SW, Giudici G, Czepulkowski B, Biondi A, Kearney L . Delineation of multiple deleted regions in 7q in myeloid disorders. Genes Chromosomes Cancer 1999; 25: 384–392.

    Article  CAS  PubMed  Google Scholar 

  32. Gondek LP, Tiu R, O′Keefe CL, Sekeres MA, Theil KS, Maciejewski JP . Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML. Blood 2008; 111: 1534–1542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hofmann W, Tong X, Ajioka RS, Kushner JP, Koeffler HP . Mutation analysis of transferrin-receptor 2 in patients with atypical hemochromatosis. Blood 2002; 100: 1099–1100.

    Article  CAS  PubMed  Google Scholar 

  34. Wang Z, Miura N, Bonelli A, Mole P, Carlesso N, Olson DP et al. Receptor tyrosine kinase, EphB4 (HTK), accelerates differentiation of select human hematopoietic cells. Blood 2002; 99: 2740–2747.

    Article  CAS  PubMed  Google Scholar 

  35. Pennisi A, Ling W, Li X, Khan S, Shaughnessy JD, Barlogie B et al. The ephrinB2/EphB4 axis is dysregulated in osteoprogenitors from myeloma patients and its activation affects myeloma bone disease and tumor growth. Blood 2009; 114: 1803–1812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Speck NA, Gilliland DG . Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer 2002; 2: 502–513.

    Article  CAS  PubMed  Google Scholar 

  37. Heinrichs S, Li C, Look AT . SNP array analysis in hematologic malignancies: avoiding false discoveries. Blood 2010; 115: 4157–4161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Praulich I, Tauscher M, Göhring G, Glaser S, Hofmann W, Feurstein S et al. Clonal heterogeneity in childhood myelodysplastic syndromes—challenge for the detection of chromosomal imbalances by array-CGH. Genes Chromosomes Cancer 2010; 49: 885–900.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Wilhelm Sander Stiftung 2008.027.1 (BR-P) and a grant from the Forschungskommission HHU Duesseldorf 11/06 (CE and BB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Royer-Pokora.

Ethics declarations

Competing interests

The authors declare no conflict of interest

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiel, A., Beier, M., Ingenhag, D. et al. Comprehensive array CGH of normal karyotype myelodysplastic syndromes reveals hidden recurrent and individual genomic copy number alterations with prognostic relevance. Leukemia 25, 387–399 (2011). https://doi.org/10.1038/leu.2010.293

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.293

Keywords

This article is cited by

Search

Quick links