Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Normal Hemopoiesis

Zebrafish microRNA-126 determines hematopoietic cell fate through c-Myb

Abstract

Precise regulatory mechanisms are required to appropriately modulate the cellular levels of transcription factors controlling cell fate decisions during blood cell development. In this study, we show that miR-126 is a novel physiological regulator of the proto-oncogene c-myb during definitive hematopoiesis. We show that knockdown of miR-126 results in increased c-Myb levels and promotes erythropoiesis at the expense of thrombopoiesis in vivo. We further provide evidence that specification of thrombocyte versus erythrocyte cell lineages is altered by the concerted activities of the microRNAs (miRNAs) miR-126 and miR-150. Both miRNAs are required but not sufficient individually to precisely regulate the cell fate decision between erythroid and megakaryocytic lineages during definitive hematopoiesis in vivo. These results support the notion that miRNAs not only function to provide precision to developmental programs but also are essential determinants in the control of variable potential functions of a single gene during hematopoiesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Zhu J, Emerson SG . Hematopoietic cytokines, transcription factors and lineage commitment. Oncogene 2002; 21: 3295–3313.

    Article  CAS  PubMed  Google Scholar 

  2. Cantor AB, Orkin SH . Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene 2002; 21: 3368–3376.

    Article  CAS  PubMed  Google Scholar 

  3. Friedman AD . Transcriptional regulation of granulocyte and monocyte development. Oncogene 2002; 21: 3377–3390.

    Article  CAS  PubMed  Google Scholar 

  4. Ye M, Graf T . Early decisions in lymphoid development. Curr Opin Immunol 2007; 19: 123–128.

    Article  CAS  PubMed  Google Scholar 

  5. Rosenbauer F, Tenen DG . Transcription factors in myeloid development: balancing differentiation with transformation. Nat Rev Immunol 2007; 7: 105–117.

    Article  CAS  PubMed  Google Scholar 

  6. Greig K, Carotta S, Nutt S . Critical roles for c-Myb in hematopoietic progenitor cells. Semin Immunol 2008; 20: 247–256.

    Article  CAS  PubMed  Google Scholar 

  7. O′Neil J, Tchinda J, Gutierrez A, Moreau L, Maser RS, Wong KK et al. Alu elements mediate MYB gene tandem duplication in human T-ALL. J Exp Med 2007; 204: 3059–3066.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ramsay R, Gonda T . MYB function in normal and cancer cells. Nat Rev 2008; 8: 523–534.

    Article  CAS  Google Scholar 

  9. Lahortiga I, De Keersmaecker K, Van Vlierberghe P, Graux C, Cauwelier B, Lambert F et al. Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. Nat Genet 2007; 39: 593–595.

    Article  CAS  PubMed  Google Scholar 

  10. Clappier E, Cuccuini W, Kalota A, Crinquette A, Cayuela J-M, Dik WA et al. The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL), the translocation defining a new T-ALL subtype in very young children. Blood 2007; 110: 1251–1261.

    Article  CAS  PubMed  Google Scholar 

  11. Bushati N, Cohen SM . microRNA functions. Ann Rev Cell Dev Biol 2007; 23: 175–205.

    Article  CAS  Google Scholar 

  12. Garzon R, Croce CM . MicroRNAs in normal and malignant hematopoiesis. Curr Opin Hematol 2008; 15: 352–358.

    Article  CAS  PubMed  Google Scholar 

  13. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB . Prediction of mammalian microRNA targets. Cell 2003; 115: 787–798.

    Article  CAS  PubMed  Google Scholar 

  14. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37: 495–500.

    Article  CAS  PubMed  Google Scholar 

  15. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ . miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006; 34 (Database issue): D140–D144.

    Article  CAS  PubMed  Google Scholar 

  16. Zhao H, Kalota A, Jin S, Gewirtz AM . The c-myb protooncogene and microRNA (miR)-15a comprise an active autoregulatory feedback loop in human hematopoietic cells. Blood 2009; 113: 505–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thomas MD, Kremer CS, Ravichandran KS, Rajewsky K, Bender TP . c-Myb is critical for B cell development and maintenance of follicular B cells. Immunity 2005; 23: 275–286.

    Article  CAS  PubMed  Google Scholar 

  18. Xiao C, Calado D, Galler G, Thai T, Patterson H, Wang J et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 2007; 131: 146–159.

    Article  CAS  PubMed  Google Scholar 

  19. Lu J, Guo S, Ebert BL, Zhang H, Peng X, Bosco J et al. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell 2008; 14: 843–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. De Jong J, Zon L . Use of the zebrafish system to study primitive and definitive hematopoiesis. Ann Rev Genet 2005; 39: 481–501.

    Article  CAS  PubMed  Google Scholar 

  21. Nasevicius A, Ekker SC . Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 2000; 26: 216–220.

    Article  CAS  PubMed  Google Scholar 

  22. Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 2006; 312: 75–79.

    Article  CAS  PubMed  Google Scholar 

  23. Bertrand JY, Chi NC, Santoso B, Teng S, Stainier DY, Traver D . Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 2010; 464: 108–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kissa K, Herbomel P . Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 2010; 464: 112–115.

    Article  CAS  PubMed  Google Scholar 

  25. Bertrand JY, Kim AD, Teng S, Traver D . CD41+ cmyb+ precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis. Development 2008; 135: 1853–1862.

    Article  CAS  PubMed  Google Scholar 

  26. Bertrand JY, Kim AD, Violette EP, Stachura DL, Cisson JL, Traver D . Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo. Development 2007; 134: 4147–4156.

    Article  CAS  PubMed  Google Scholar 

  27. Kissa K, Murayama E, Zapata A, Cortes A, Perret E, Machu C et al. Live imaging of emerging hematopoietic stem cells and early thymus colonization. Blood 2008; 111: 1147–1156.

    Article  CAS  PubMed  Google Scholar 

  28. Tober J, McGrath KE, Palis J . Primitive erythropoiesis and megakaryopoiesis in the yolk sac are independent of c-myb. Blood 2008; 111: 2636–2639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin Y-C, Kuo M-W, Yu J, Kuo H-H, Lin R-J, Lo W-L et al. c-Myb is an evolutionary conserved miR-150 target and miR-150/c-Myb interaction is important for embryonic development. Mol Biol Evol 2008; 25: 2189–2198.

    Article  CAS  PubMed  Google Scholar 

  30. North T, Goessling W, Walkley C, Lengerke C, Kopani K, Lord A et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature (London) 2007; 447: 1007–1011.

    Article  CAS  Google Scholar 

  31. Traver D, Paw BH, Poss KD, Penberthy WT, Lin S, Zon LI . Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol 2003; 4: 1238–1246.

    Article  CAS  PubMed  Google Scholar 

  32. Lin HF, Traver D, Zhu H, Dooley K, Paw BH, Zon LI et al. Analysis of thrombocyte development in CD41-GFP transgenic zebrafish. Blood 2005; 106: 3803–3810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lister JA, Robertson CP, Lepage T, Johnson SL, Raible DW . nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. Development 1999; 126: 3757–3767.

    CAS  PubMed  Google Scholar 

  34. Westerfield M . The Zebrafish Book, 3rd edn. The University of Oregon Press: Eugene, 1995.

    Google Scholar 

  35. Robu ME, Larson JD, Nasevicius A, Beiraghi S, Brenner C, Farber SA et al. p53 activation by knockdown technologies. PLoS Genet 2007; 3: e78.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rhodes J, Hagen A, Hsu K, Deng M, Liu TX, Look AT et al. Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish. Dev Cell 2005; 8: 97–108.

    Article  CAS  PubMed  Google Scholar 

  37. Pfaffl MW, Horgan GW, Dempfle L . Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 2002; 30: e36.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li Z, Lu J, Sun M, Mi S, Zhang H, Luo RT et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci 2008; 105: 15535–15540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jin P, Wang E, Ren J, Childs R, Shin J, Khuu H et al. Differentiation of two types of mobilized peripheral blood stem cells by microRNA and cDNA expression analysis. J Transl Med 2008; 6: 39.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cammarata G, Augugliaro L, Salemi D, Agueli C, La Rosa M, Dagnino L et al. Differential expression of specific microRNA and their targets in acute myeloid leukemia. Am J Hematol 2010; 85: 331–339.

    CAS  PubMed  Google Scholar 

  41. O’Connell R, Chaudhuri A, Rao D, Gibson W, Balazs A, Baltimore D . MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output. Proc Natl Acad Sci USA 2010; 107: 14235–14240.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Choi WY, Giraldez AJ, Schier AF . Target protectors reveal dampening and balancing of nodal agonist and antagonist by miR-430. Science 2007; 318: 271–274.

    Article  CAS  PubMed  Google Scholar 

  43. Davidson AJ, Zon LI . The ‘definitive’ (and ‘primitive’) guide to zebrafish hematopoiesis. Oncogene 2004; 23: 7233–7246.

    Article  CAS  PubMed  Google Scholar 

  44. Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 2008; 15: 272–284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jagadeeswaran P, Sheehan JP, Craig FE, Troyer D . Identification and characterization of zebrafish thrombocytes. Br J Haematol 1999; 107: 731–738.

    Article  CAS  PubMed  Google Scholar 

  46. Kaushansky K . Historical review: megakaryopoiesis and thrombopoiesis. Blood 2008; 111: 981–986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin YC, Kuo MW, Yu J, Kuo HH, Lin RJ, Lo WL et al. c-Myb is an evolutionary conserved miR-150 target and miR-150/c-Myb interaction is important for embryonic development. Mol Biol Evol 2008; 25: 2189–2198.

    Article  CAS  PubMed  Google Scholar 

  48. Lu J, Guo S, Ebert BL, Zhang H, Peng X, Bosco J et al. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell 2008; 14: 843–853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nicoli S, Standley C, Walker P, Hurlstone A, Fogarty K, Lawson N . MicroRNA-mediated integration of haemodynamics and Vegf signalling during angiogenesis. Nature 2010; 464: 1196–1200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nicot C, Mahieux R, Pise-Masison C, Brady J, Gessain A, Yamaoka S et al. Human T-cell lymphotropic virus type 1 Tax represses c-Myb-dependent transcription through activation of the NF-κB pathway and modulation of coactivator usage. Mol Cell Biol 2001; 21: 7391–7402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yamakami M, Yokosawa H . Tom1 (target of Myb 1) is a novel negative regulator of interleukin-1- and tumor necrosis factor-induced signaling pathways. Biol Pharm Bull 2004; 27: 564–566.

    Article  CAS  PubMed  Google Scholar 

  52. Oglesby I, Bray I, Chotirmall S, Stallings R, O′Neill S, McElvaney N et al. miR-126 is downregulated in cystic fibrosis airway epithelial cells and regulates TOM1 expression. J Immunol 2010; 184: 1702–1709.

    Article  CAS  PubMed  Google Scholar 

  53. Leverson JD, Koskinen PJ, Orrico FC, Rainio EM, Jalkanen KJ, Dash AB et al. Pim-1 kinase and p100 cooperate to enhance c-Myb activity. Mol Cell 1998; 2: 417–425.

    Article  CAS  PubMed  Google Scholar 

  54. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R . Fast and effective prediction of microRNA/target duplexes. RNA 2004; 10: 1507–1517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R Hoffmans, U Pyati and N Bushati for critical comments on the manuscript and L Zon for the Tg(c-myb:EGFP) zebrafish line. This work was supported by the NIH grant CA93152 (ATL). EMP is the recipient of a Clinical Research Training Fellowship from Leukemia and Lymphoma Research UK. NB is a Special Fellow of the Leukemia and Lymphoma Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Grabher.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabher, C., Payne, E., Johnston, A. et al. Zebrafish microRNA-126 determines hematopoietic cell fate through c-Myb. Leukemia 25, 506–514 (2011). https://doi.org/10.1038/leu.2010.280

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.280

Keywords

This article is cited by

Search

Quick links