Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Myeloma

Insulin is a potent myeloma cell growth factor through insulin/IGF-1 hybrid receptor activation

Abstract

Insulin and insulin growth factor type 1 (IGF-1) and their receptors are closely related molecules, but both factors bind to the receptor of the other one with a weak affinity. No study has presently documented a role of insulin as a myeloma growth factor (MGF) for human multiple myeloma cells (MMCs), whereas many studies have concluded that IGF-1 is a major MGF. IGF-1 receptor (IGF-1R) is aberrantly expressed by MMCs in association with a poor prognosis. In this study we show that insulin receptor (INSR) is increased throughout normal plasma cell differentiation. INSR gene is also expressed by MMCs of 203/206 newly diagnosed patients. Insulin is an MGF as potent as IGF-1 at physiological concentrations and requires the presence of insulin/IGF-1 hybrid receptors, stimulating INSR+IGF-1R+ MMCs, unlike INSR+IGF-1R or INSRIGF-1R MMCs. Immunoprecipitation experiments indicate that INSR is linked with IGF-1R in MMCs and that insulin induces both IGF-1R and INSR phosphorylations and vice versa. In conclusion, we demonstrate for the first time that insulin is an MGF as potent as IGF-1 at physiological concentrations and its activity necessitates insulin/IGF-1 hybrid receptor activation. Further therapeutic strategies targeting the IGF/IGF-1R pathway have to take into account neutralizing the IGF-1R-mediated insulin MGF activity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Pollak M . Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 2008; 8: 915–928.

    Article  CAS  Google Scholar 

  2. Freund GG, Kulas DT, Mooney RA . Insulin and IGF-1 increase mitogenesis and glucose metabolism in the multiple myeloma cell line, RPMI-8226. J Immunol 1993; 151: 1811–1820.

    CAS  PubMed  Google Scholar 

  3. De Vos J, Hose D, Reme T, Moreaux J, Mahtouk K, Jourdan M et al. Microarray-based understanding of normal and malignant plasma cells. Immunol Rev 2006; 210: 86–104.

    Article  CAS  Google Scholar 

  4. Sprynski AC, Hose D, Caillot L, Reme T, Shaughnessy Jr JD, Barlogie B et al. The role of IGF-1 as a major growth factor for myeloma cell lines and the prognostic relevance of the expression of its receptor. Blood 2009; 113: 4614–4626.

    Article  CAS  Google Scholar 

  5. Bataille R, Robillard N, Avet-Loiseau H, Harousseau JL, Moreau P . CD221 (IGF-1R) is aberrantly expressed in multiple myeloma, in relation to disease severity. Haematologica 2005; 90: 706–707.

    CAS  PubMed  Google Scholar 

  6. Chng WJ, Gualberto A, Fonseca R . IGF-1R is overexpressed in poor-prognostic subtypes of multiple myeloma. Leukemia 2006; 20: 174–176.

    Article  CAS  Google Scholar 

  7. De Meyts P, Whittaker J . Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov 2002; 1: 769–783.

    Article  CAS  Google Scholar 

  8. Pandini G, Frasca F, Mineo R, Sciacca L, Vigneri R, Belfiore A . Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J Biol Chem 2002; 277: 39684–39695.

    Article  CAS  Google Scholar 

  9. Slaaby R, Schaffer L, Lautrup-Larsen I, Andersen AS, Shaw AC, Mathiasen IS et al. Hybrid receptors formed by insulin receptor (IR) and insulin-like growth factor I receptor (IGF-IR) have low insulin and high IGF-1 affinity irrespective of the IR splice variant. J Biol Chem 2006; 281: 25869–25874.

    Article  CAS  Google Scholar 

  10. Zhang XG, Gaillard JP, Robillard N, Lu ZY, Gu ZJ, Jourdan M et al. Reproducible obtaining of human myeloma cell lines as a model for tumor stem cell study in human multiple myeloma. Blood 1994; 83: 3654–3663.

    CAS  PubMed  Google Scholar 

  11. Jourdan M, Caraux A, De Vos J, Fiol G, Larroque M, Cognot C et al. An in vitro model of differentiation of memory B cells into plasmablasts and plasma cells including detailed phenotypic and molecular characterization. Blood 2009; 114: 5173–5181.

    Article  CAS  Google Scholar 

  12. Mahtouk K, Jourdan M, De Vos J, Hertogh C, Fiol G, Jourdan E et al. An inhibitor of the EGF receptor family blocks myeloma cell growth factor activity of HB-EGF and potentiates dexamethasone or anti-IL-6 antibody-induced apoptosis. Blood 2004; 103: 1829–1837.

    Article  CAS  Google Scholar 

  13. Wijdenes J, Clement C, Klein B, Morel-Fourrier B, VIta N, Ferrara P et al. Human recombinant dimeric IL-6 binds to its receptor as detected by anti-IL-6 monoclonal antibodies. Mol Immunol 1991; 28: 1183.

    Article  CAS  Google Scholar 

  14. Garcia-Echeverria C, Pearson MA, Marti A, Meyer T, Mestan J, Zimmermann J et al. In vivo antitumor activity of NVP-AEW541-A novel, potent, and selective inhibitor of the IGF-IR kinase. Cancer Cell 2004; 5: 231–239.

    Article  CAS  Google Scholar 

  15. Johansson GS, Arnqvist HJ . Insulin and IGF-I action on insulin receptors, IGF-I receptors, and hybrid insulin/IGF-I receptors in vascular smooth muscle cells. Am J Physiol Endocrinol Metab 2006; 291: E1124–E1130.

    Article  CAS  Google Scholar 

  16. Mahtouk K, Hose D, Reme T, De Vos J, Jourdan M, Moreaux J et al. Expression of EGF-family receptors and amphiregulin in multiple myeloma. Amphiregulin is a growth factor for myeloma cells. Oncogene 2005; 24: 3512–3524.

    Article  CAS  Google Scholar 

  17. Michel J, Martine F, Eric L, Mira H, Janny L, Jean FranÇois R et al. The myeloma cell antigen syndecan-1 is lost by apoptotic myeloma cells. Br J Haematol 1998; 100: 637–646.

    Article  Google Scholar 

  18. Reme T, Hose D, De Vos J, Vassal A, Poulain PO, Pantesco V et al. A new method for class prediction based on signed-rank algorithms applied to Affymetrix microarray experiments. BMC Bioinformatics 2008; 9: 16.

    Article  Google Scholar 

  19. Assou S, Le Carrour T, Tondeur S, Strom S, Gabelle A, Marty S et al. A meta-analysis of human embryonic stem cells transcriptome integrated into a web-based expression atlas. Stem Cells 2007; 25: 961–973.

    Article  CAS  Google Scholar 

  20. Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Chng WJ et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 2007; 12: 131–144.

    Article  CAS  Google Scholar 

  21. Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 2007; 12: 115–130.

    Article  CAS  Google Scholar 

  22. Demchenko YN, Glebov OK, Zingone A, Keats JJ, Bergsagel PL, Kuehl WM . Classical and/or alternative NF-{kappa}B pathway activation in multiple myeloma. Blood 2010; 115: 3541–3552.

    Article  CAS  Google Scholar 

  23. Dib A, Gabrea A, Glebov OK, Bergsagel PL, Kuehl WM . Characterization of MYC translocations in multiple myeloma cell lines. J Natl Cancer Inst Monogr 2008; 39: 25–31.

    Article  CAS  Google Scholar 

  24. Hyun T, Yam A, Pece S, Xie X, Zhang J, Miki T et al. Loss of PTEN expression leading to high Akt activation in human multiple myelomas. Blood 2000; 96: 3560–3568.

    CAS  PubMed  Google Scholar 

  25. Denley A, Wallace JC, Cosgrove LJ, Forbes BE . The insulin receptor isoform exon 11- (IR-A) in cancer and other diseases: a review. Horm Metab Res 2003; 35: 778–785.

    Article  CAS  Google Scholar 

  26. Denley A, Cosgrove LJ, Booker GW, Wallace JC, Forbes BE . Molecular interactions of the IGF system. Cytokine Growth Factor Rev 2005; 16: 421–439.

    Article  CAS  Google Scholar 

  27. Pandini G, Vigneri R, Costantino A, Frasca F, Ippolito A, Fujita-Yamaguchi Y et al. Insulin and insulin-like growth factor-I (IGF-I) receptor overexpression in breast cancers leads to insulin/IGF-I hybrid receptor overexpression: evidence for a second mechanism of IGF-I signaling. Clin Cancer Res 1999; 5: 1935–1944.

    CAS  Google Scholar 

  28. Pandini G, Wurch T, Akla B, Corvaia N, Belfiore A, Goetsch L . Functional responses and in vivo anti-tumour activity of h7C10: a humanised monoclonal antibody with neutralising activity against the insulin-like growth factor-1 (IGF-1) receptor and insulin/IGF-1 hybrid receptors. Eur J Cancer 2007; 43: 1318–1327.

    Article  CAS  Google Scholar 

  29. Bret C, Hose D, Reme T, Sprynski AC, Mahtouk K, Schved JF et al. Expression of genes encoding for proteins involved in heparan sulphate and chondroitin sulphate chain synthesis and modification in normal and malignant plasma cells. Br J Haematol 2009; 145: 350–368.

    Article  CAS  Google Scholar 

  30. Taniguchi CM, Emanuelli B, Kahn CR . Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 2006; 7: 85–96.

    Article  CAS  Google Scholar 

  31. Moreaux J, Hose D, Reme T, Moine P, Mahtouk K, Moos M et al. Osteoclast gene expression profiling in multiple myeloma. Blood 2008; 112: 945.

    Google Scholar 

  32. Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ . Overweight, obesity, and mortality from cancer in a prospectively studied cohort of US adults. N Engl J Med 2003; 348: 1625–1638.

    Article  Google Scholar 

  33. Ma J, Li H, Giovannucci E, Mucci L, Qiu W, Nguyen PL et al. Prediagnostic body-mass index, plasma C-peptide concentration, and prostate cancer-specific mortality in men with prostate cancer: a long-term survival analysis. Lancet Oncol 2008; 9: 1039–1047.

    Article  CAS  Google Scholar 

  34. Goodwin PJ, Ennis M, Pritchard KI, Trudeau ME, Koo J, Madarnas Y et al. Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study. J Clin Oncol 2002; 20: 42–51.

    Article  CAS  Google Scholar 

  35. Fortuny J, Benavente Y, Bosch R, Garcia-Villanueva M, de Sevilla AF, de Sanjose S . Type 2 diabetes mellitus, its treatment and risk for lymphoma. Eur J Cancer 2005; 41: 1782–1787.

    Article  CAS  Google Scholar 

  36. Bowker SL, Majumdar SR, Veugelers P, Johnson JA . Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care 2006; 29: 254–258.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Ligue Nationale Contre le Cancer (équipe labellisée), Paris, France, from INCA (no. R07001FN) and from MSCNET European strep (no. E06005FF), the Hopp-Foundation, Germany, the University of Heidelberg, Germany, the National Centre for Tumor Diseases, Heidelberg, Germany, the Tumorzentrum Heidelberg/Mannheim, Germany. AC Sprynski is supported by Association Guillaume Espoir, St Genis Laval, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Klein.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sprynski, A., Hose, D., Kassambara, A. et al. Insulin is a potent myeloma cell growth factor through insulin/IGF-1 hybrid receptor activation. Leukemia 24, 1940–1950 (2010). https://doi.org/10.1038/leu.2010.192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.192

Keywords

This article is cited by

Search

Quick links