Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Involvement of mast cells by the malignant process in patients with Philadelphia chromosome negative myeloproliferative neoplasms

Abstract

The Philadelphia chromosome negative myeloproliferative neoplasms (MPNs) are clonal hematologic malignancies frequently characterized by a mutation in JAK2 (JAK2V617F). Peripheral blood (PB) CD34+ cells from patients with polycythemia vera (PV) and primary myelofibrosis (PMF) generated in vitro significantly fewer mast cells (MCs) than normal PB CD34+ cells. The numbers of MC progenitors assayed from MPN CD34+ cells were, however, similar to that assayed from normal CD34+ cells. A higher percentage of the cultured MPN MCs expressed FcɛRIα, CD63 and CD69 than normal MCs, suggesting that cultured MPN MCs are associated with an increased state of MC activation. Further analysis showed that a higher proportion of cultured PV and PMF MCs underwent apoptosis in vitro. By using JAK2V617F, MplW515L and chromosomal abnormalities as clonality markers, we showed that the malignant process involved MPN MCs. JAK2V617F-positive MC colonies were assayable from the PB CD34+ cells of each of the 17 JAK2V617F positive MPN patients studied. Furthermore, erlotinib, a JAK2 inhibitor, was able to inhibit JAK2V617F-positive PV MC progenitor cells, indicating that malignant MC progenitor cells are a potential cellular target for such JAK2 inhibitor-directed therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Hoffman R, Xu M, Finazzi G, Barbui T . The polycythemias. In: Hoffman R, Benz Jr E, Shattil S, Furie B, Silberstein L, McGlave P, Heslop H (eds). Hematology: Basic Principles and Practice, 5th edn. Churchill Livingstone: Philadelphia, 2008, 1073–1108.

    Google Scholar 

  2. Mesa RA . Clinical and scientific advances in the Philadelphia-chromosome negative chronic myeloproliferative disorders. Int J Hematol 2002; 76: 193–203.

    Article  Google Scholar 

  3. Panani AD . Cytogenetic and molecular aspects of Philadelphia negative chronic myeloproliferative disorders: clinical implications. Cancer Lett 2007; 255: 12–25. Review.

    Article  CAS  Google Scholar 

  4. Najfeld V, Montella L, Scalise A, Fruchtman S . Exploring polycythaemia vera with fluorescence in situ hybridization: additional cryptic 9p is the most frequent abnormality detected. Br J Haematol 2002; 119: 558–566.

    Article  Google Scholar 

  5. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054–1061.

    Article  CAS  Google Scholar 

  6. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–397.

    Article  CAS  Google Scholar 

  7. James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148.

    Article  CAS  Google Scholar 

  8. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790.

    Article  CAS  Google Scholar 

  9. Zhao R, Xing S, Li Z, Fu X, Li Q, Krantz SB et al. Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem 2005; 280: 22788–22792.

    Article  CAS  Google Scholar 

  10. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006; 3: e270.

    Article  Google Scholar 

  11. Pardanani AD, Levine RL, Lasho T, Pikman Y, Mesa RA, Wadleigh M et al. MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. Blood 2006; 108: 3472–3476.

    Article  CAS  Google Scholar 

  12. Wernig G, Mercher T, Okabe R, Levine RL, Lee BH, Gilliland DG . Expression of Jak2V617F causes a polycythemia vera-like disease with associated myelofibrosis in a murine bone marrow transplant model. Blood 2006; 107: 4274–4281.

    Article  CAS  Google Scholar 

  13. Lacout C, Pisani DF, Tulliez M, Gachelin FM, Vainchenker W, Villeval JL . JAK2V617F expression in murine hematopoietic cells leads to MPD mimicking human PV with secondary myelofibrosis. Blood 2006; 108: 1652–1660.

    Article  CAS  Google Scholar 

  14. Zaleskas VM, Krause DS, Lazarides K, Patel N, Hu Y, Li S et al. Molecular pathogenesis and therapy of polycythemia induced in mice by JAK2V617F. PLoS ONE 2006; 1: e18.

    Article  Google Scholar 

  15. Bumm TG, Elsea C, Corbin AS, Loriaux M, Sherbenou D, Wood L et al. Characterization of murine JAK2V617F-positive myeloproliferative disease. Cancer Res 2006; 66: 11156–11165.

    Article  CAS  Google Scholar 

  16. Xing S, Wanting TH, Zhao W, Ma J, Wang S, Xu X et al. Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice. Blood 2008; 111: 5109–5117.

    Article  CAS  Google Scholar 

  17. Shide K, Shimoda HK, Kumano T, Karube K, Kameda T, Takenaka K et al. Development of ET, primary myelofibrosis and PV in mice expressing JAK2V617F. Leukemia 2008; 22: 87–95.

    Article  CAS  Google Scholar 

  18. Tiedt R, Hao-Shen H, Sobas MA, Looser R, Dirnhofer S, Schwaller J et al. Ratio of mutant JAK2V617F to wild-type Jak2 determines the MPD phenotypes in transgenic mice. Blood 2008; 111: 3931–3940.

    Article  CAS  Google Scholar 

  19. Adamson JW, Fialkow PJ, Murphy S, Prchal JF, Steinmann L . Polycythemia vera: stem-cell and probable clonal origin of the disease. N Engl J Med 1976; 295: 913–916.

    Article  CAS  Google Scholar 

  20. Fialkow PJ, Faguet GB, Jacobson RJ, Vaidya K, Murphy S . Evidence that essential thrombocythemia is a clonal disorder with origin in a multipotent stem cell. Blood 1981; 58: 916–919.

    CAS  PubMed  Google Scholar 

  21. Raskind WH, Jacobson R, Murphy S, Adamson JW, Fialkow PJ . Evidence for the involvement of B lymphoid cells in polycythemia vera and essential thrombocythemia. J Clin Invest 1985; 75: 1388–1390.

    Article  CAS  Google Scholar 

  22. Tsukamoto N, Morita K, Maehara T, Okamoto K, Sakai H, Karasawa M et al. Clonality in chronic myeloproliferative disorders defined by X-chromosome linked probes: demonstration of heterogeneity in lineage involvement. Br J Haematol 1994; 86: 253–258.

    Article  CAS  Google Scholar 

  23. Williams CK, Ogunmola GB, Abugo O, Ukaejiofo EO, Esan GJ . Polycythaemia rubra vera associated with unbalanced expression of the X chromosome and monoclonality of T lymphocytes. Acta Haematol 1983; 70: 229–235.

    Article  CAS  Google Scholar 

  24. Buschle M, Janssen JW, Drexler H, Lyons J, Anger B, Bartram CR . Evidence for pluripotent stem cell origin of idiopathic myelofibrosis: clonal analysis of a case characterized by a N-ras gene mutation. Leukemia 1988; 2: 658–660.

    CAS  PubMed  Google Scholar 

  25. Reeder TL, Bailey RJ, Dewald GW, Tefferi A . Both B and T lymphocytes may be clonally involved in myelofibrosis with myeloid metaplasia. Blood 2003; 101: 1981–1983.

    Article  CAS  Google Scholar 

  26. Kralovics R, Guan Y, Prchal JT . Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera. Exp Hematol 2002; 30: 229–236.

    Article  CAS  Google Scholar 

  27. Akin C . Clonality and molecular pathogenesis of mastocytosis. Acta Haematol 2005; 114: 61–69.

    Article  CAS  Google Scholar 

  28. Ishii T, Bruno E, Hoffman R, Xu M . Involvement of various hematopoietic-cell lineages by the JAK2V617F mutation in polycythemia vera. Blood 2006; 108: 3128–3134.

    Article  CAS  Google Scholar 

  29. Jamieson CH, Gotlib J, Durocher JA, Chao MP, Mariappan MR, Lay M et al. The JAK2V617F mutation occurs in hematopoietic stem cells in polycythemia vera and predisposes toward erythroid differentiation. Proc Natl Acad Sci USA 2006; 103: 6224–6229.

    Article  CAS  Google Scholar 

  30. Delhommeau F, Dupont S, Tonetti C, Massé A, Godin I, Le Couedic JP et al. Evidence that the JAK2G1849T (V617F) mutation occurs in a lymphomyeloid progenitor in polycythemia vera and diopathic myelofibrosis. Blood 2007; 109: 71–77.

    Article  CAS  Google Scholar 

  31. Larsen TS, Christensen JH, Hasselbalch HC, Pallisgaard N . The JAK2V617F mutation involves B- and T-lymphocyte lineages in a subgroup of patients with Philadelphia-chromosome negative chronic myeloproliferative disorders. Br J Haematol 2007; 136: 745–751.

    Article  CAS  Google Scholar 

  32. Hu WY, Zhao Y, Ishii T, Sozer S, Shi J, Zhang W et al. Haematopoietic cell lineage distribution of MPLW515L/K mutations in patients with idiopathic myelofibrosis. Br J Haematol 2007; 137: 378–379.

    Article  CAS  Google Scholar 

  33. Chaligné R, James C, Tonetti C, Besancenot R, Le Couédic JP, Fava F et al. Evidence for MPLW515L/K mutations in hematopoietic stem cells in primitive myelofibrosis. Blood 2007; 110: 3735–3743.

    Article  Google Scholar 

  34. Tefferi A, Vardiman JW . Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 2008; 22: 14–22.

    Article  CAS  Google Scholar 

  35. Xu M, Bruno E, Chao J, Ni H, Lindgren V, Nunez R et al. The constitutive mobilization of bone marrow-repopulating cells into the peripheral blood in idiopathic myelofibrosis. Blood 2005; 105: 1699–1705.

    Article  CAS  Google Scholar 

  36. Toru H, Eguchi M, Matsumoto R, Yanagida M, Yata J, Nakahata T . Interleukin-4 promotes the development of tryptase and chymase double-positive human mast cells accompanied by cell maturation. Blood 1998; 91: 187–195.

    CAS  PubMed  Google Scholar 

  37. Saito H, Kato A, Matsumoto K, Okayama Y . Culture of human mast cells from peripheral blood progenitors. Nat Protoc 2006; 1: 2178–2183.

    Article  CAS  Google Scholar 

  38. Li Z, Xu M, Xing S, Ho WT, Ishii T, Li Q et al. Erlotinib effectively inhibits JAK2V617F activity and polycythemia vera cell growth. J Biol Chem 2007; 282: 3428–3432.

    Article  CAS  Google Scholar 

  39. Ishii T, Zhao Y, Shi J, Sozer S, Hoffman R, Xu M . T cells from patients with polycythemia vera elaborate growth factors which contribute to endogenous erythroid and megakaryocyte colony formation. Leukemia 2007; 21: 2433–2441.

    Article  CAS  Google Scholar 

  40. Ghinassi B, Sanchez M, Martelli F, Amabile G, Vannucchi AM, Migliaccio G et al. The hypomorphic Gata1low mutation alters the proliferation/differentiation potential of the common megakaryocytic-erythroid progenitor. Blood 2007; 109: 1460–1471.

    Article  CAS  Google Scholar 

  41. Sutton BJ, Gould HJ . The human IgE network. Nature 1993; 366: 421–428. Review.

    Article  CAS  Google Scholar 

  42. Gilfillan AM, Kado-Fong H, Wiggan GA, Hakimi J, Kent U, Kochan JP . Conservation of signal transduction mechanisms via the human Fc epsilon RI alpha after transfection into a rat mast cell line, RBL 2H3. J Immunol 1992; 149: 2445–2451.

    CAS  PubMed  Google Scholar 

  43. Nishida K, Yamasaki S, Ito Y, Kabu K, Hattori K, Tezuka T et al. Fc{epsilon}RI-mediated mast cell degranulation requires calcium-independent microtubule-dependent translocation of granules to the plasma membrane. J Cell Biol 2005; 170: 115–126.

    Article  CAS  Google Scholar 

  44. Furuno T, Teshima R, Kitani S, Sawada J, Nakanishi M . Surface expression of CD63 antigen (AD1 antigen) in P815 mastocytoma cells by transfected IgE receptors. Biochem Biophys Res Commun 1996; 219: 740–744.

    Article  CAS  Google Scholar 

  45. Díaz-Agustín B, Escribano L, Bravo P, Herrero S, Nuñez R, Navalón R et al. The CD69 early activation molecule is overexpressed in human bone marrow mast cells from adults with indolent systemic mast cell disease. Br J Haematol 1999; 106: 400–405.

    Article  Google Scholar 

  46. Escribano L, Orfao A, Díaz Agustín B, Cerveró C, Herrero S, Villarrubia J et al. Human bone marrow mast cells from indolent systemic mast cell disease constitutively express increased amounts of the CD63 protein on their surface. Cytometry 1998; 34: 223–228.

    Article  CAS  Google Scholar 

  47. Scott LM, Scott MA, Campbell PJ, Green AR . Progenitors homozygous for the V617F mutation occur in most patients with polycythemia vera, but not essential thrombocythemia. Blood 2006; 108: 2435–2437.

    Article  CAS  Google Scholar 

  48. Kitamura Y, Yokoyama M, Matsuda H, Ohno T, Mori KJ . Spleen colony-forming cell as common precursor for tissue mast cells and granulocytes. Nature 1981; 291: 159–160.

    Article  CAS  Google Scholar 

  49. Kitamura Y, Go S, Hatanaka K . Decrease of mast cells in W/Wv mice and their increase by bone marrow transplantation. Blood 1978; 52: 447–452.

    CAS  PubMed  Google Scholar 

  50. Kambe N, Hiramatsu H, Shimonaka M, Fujino H, Nishikomori R, Heike T et al. Development of both human connective tissue-type and mucosal-type mast cells in mice from hematopoietic stem cells with identical distribution pattern to human body. Blood 2004; 103: 860–867.

    Article  CAS  Google Scholar 

  51. Lu X, Huang LJ, Lodish HF . Dimerization by a cytokine receptor is necessary for constitutive activation of JAK2V617F. J Biol Chem 2008; 283: 5258–5266.

    Article  CAS  Google Scholar 

  52. Hexner EO, Serdikoff C, Jan M, Swider CR, Robinson C, Yang S et al. Lestaurtinib (CEP701) is a JAK2 inhibitor that suppresses JAK2/STAT5 signaling and the proliferation of primary erythroid cells from patients with myeloproliferative disorders. Blood 2007; 111: 5663–5671.

    Article  Google Scholar 

  53. Verstovsek S, Manshouri T, Quintás-Cardama A, Harris D, Cortes J, Giles FJ et al. WP1066, a novel JAK2 inhibitor, suppresses proliferation and induces apoptosis in erythroid human cells carrying the JAK2V617F mutation. Clin Cancer Res 2008; 14: 788–796.

    Article  CAS  Google Scholar 

  54. Wernig G, Kharas MG, Okabe R, Moore SA, Leeman DS, Cullen DE et al. Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera. Cancer Cell 2008; 13: 311–320.

    Article  CAS  Google Scholar 

  55. Lipka DB, Hoffmann LS, Heidel F, Markova B, Blum MC, Breitenbuecher F et al. LS104, a non-ATP-competitive small-molecule inhibitor of JAK2, is potently inducing apoptosis in JAK2V617F-positive cells. Mol Cancer Ther 2008; 7: 1176–1184.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mrs Amy Rodriguez for helping us to obtain patient specimens. Erlotinib was a gift from OSI Pharmaceuticals. This study was supported by grants from the Department of Defense (MP048007 to MX) and Leukemia and Lymphoma Society of America (to MX). JW and TI performed most of the experiments and contributed equally to this work. VN performed and analyzed the FISH studies. JM, RH and NW acquired the patient specimens. TI analyzed the data and drafted the manuscript. WZ and YD assisted the experiments. ZZ provided assistance in designing the study. SS and JW performed the laser capture microdissection. MX designed and supervised the studies, wrote the manuscript and responsible for its final draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Xu.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Ishii, T., Zhang, W. et al. Involvement of mast cells by the malignant process in patients with Philadelphia chromosome negative myeloproliferative neoplasms. Leukemia 23, 1577–1586 (2009). https://doi.org/10.1038/leu.2009.85

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.85

Keywords

This article is cited by

Search

Quick links