Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Heat stress triggers apoptosis by impairing NF-κB survival signaling in malignant B cells

Abstract

Nuclear factor-κB (NF-κB) is involved in multiple aspects of oncogenesis and controls cancer cell survival by promoting anti-apoptotic gene expression. The constitutive activation of NF-κB in several types of cancers, including hematological malignancies, has been implicated in the resistance to chemo- and radiation therapy. We have previously reported that cytokine- or virus-induced NF-κB activation is inhibited by chemical and physical inducers of the heat shock response (HSR). In this study we show that heat stress inhibits constitutive NF-κB DNA-binding activity in different types of B-cell malignancies, including multiple myeloma, activated B-cell-like (ABC) type of diffuse large B-cell lymphoma (DLBCL) and Burkitt's lymphoma presenting aberrant NF-κB regulation. Heat-induced NF-κB inhibition leads to rapid downregulation of the anti-apoptotic protein cellular inhibitor-of-apoptosis protein 2 (cIAP-2), followed by activation of caspase-3 and cleavage of the caspase-3 substrate poly(adenosine diphosphate ribose)polymerase (PARP), causing massive apoptosis under conditions that do not affect viability in cells not presenting NF-κB aberrations. NF-κB inhibition by the proteasome inhibitor bortezomib and by short-hairpin RNA (shRNA) interference results in increased sensitivity of HS-Sultan B-cell lymphoma to hyperthermic stress. Altogether, the results indicate that aggressive B-cell malignancies presenting constitutive NF-κB activity are sensitive to heat-induced apoptosis, and suggest that aberrant NF-κB regulation may be a marker of heat stress sensitivity in cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Li Q, Verma I . NF-kappaB regulation in the immune system. Nat Rev Immunol 2002; 2: 725–734.

    Article  CAS  Google Scholar 

  2. Santoro MG, Rossi A, Amici C . NF-kappaB and virus infection: who controls whom. EMBO J 2003; 22: 2552–2560.

    Article  CAS  Google Scholar 

  3. Karin M, Lin A . NF-kappaB at the crossroads of life and death. Nat Immunol 2002; 3: 221–227.

    Article  CAS  Google Scholar 

  4. Bonizzi G, Karin M . The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol 2004; 25: 280–288.

    Article  CAS  Google Scholar 

  5. Karin M . Nuclear factor-kappaB in cancer development and progression. Nature 2006; 441: 431–436.

    Article  CAS  Google Scholar 

  6. Rayet B, Gelinas C . Aberrant rel/nfkb genes and activity in human cancer. Oncogene 1999; 18: 6938–6947.

    Article  CAS  Google Scholar 

  7. Baldwin Jr AS . The transcription factor NF-kappaB and human disease. J Clin Invest 2001; 107: 3–6.

    Article  CAS  Google Scholar 

  8. Ni H, Ergin M, Huang Q, Qin JZ, Amin HM, Martinez RL et al. Analysis of expression of nuclear factor kappa B (NF-kappa B) in multiple myeloma: downregulation of NF-kappa B induces apoptosis. Br J Haematol 2001; 115: 279–286.

    Article  CAS  Google Scholar 

  9. Bargou RC, Emmerich F, Krappmann D, Bommert K, Mapara MY, Arnold W et al. Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin's disease tumor cells. J Clin Invest 1997; 100: 2961–2969.

    Article  CAS  Google Scholar 

  10. Pham LV, Tamayo A, Yoshimura LC, Lo P, Terry N, Reid PS et al. A CD40 signalosome anchored in lipid rafts leads to constitutive activation of NF-kappaB and autonomous cell growth in B cell lymphomas. Immunity 2002; 16: 37–50.

    Article  CAS  Google Scholar 

  11. Davis RE, Brown KD, Siebenlist U, Staudt LM . Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 2001; 194: 1861–1874.

    Article  CAS  Google Scholar 

  12. Orlowski RZ, Eswara JR, Lafond-Walker A, Grever MR, Orlowski M, Dang CV . Tumor growth inhibition induced in a murine model of human Burkitt's lymphoma by a proteasome inhibitor. Cancer Res 1998; 58: 4342–4348.

    CAS  Google Scholar 

  13. Rossi A, Elia G, Santoro MG . Inhibition of nuclear factor kappa B by prostaglandin A1: an effect associated with heat shock transcription factor activation. Proc Natl Acad Sci USA 1997; 94: 746–750.

    Article  CAS  Google Scholar 

  14. Morimoto RI . Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 1998; 12: 3788–3796.

    Article  CAS  Google Scholar 

  15. Jolly C, Morimoto RI . Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst 2000; 92: 1564–1572.

    Article  CAS  Google Scholar 

  16. Morimoto RI, Santoro MG . Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nat Biotechnol 1998; 16: 833–838.

    Article  CAS  Google Scholar 

  17. Kline MP, Morimoto RI . Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol Cell Biol 1997; 17: 2107–2115.

    Article  CAS  Google Scholar 

  18. Pirkkala L, Nykanen P, Sistonen L . Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 2001; 15: 1118–1131.

    Article  CAS  Google Scholar 

  19. Anckar J, Sistonen L . Heat shock factor 1 as a coordinator of stress and developmental pathways. Adv Exp Med Biol 2007; 594: 78–88.

    Article  Google Scholar 

  20. Takayama S, Reed JC, Homma S . Heat-shock proteins as regulators of apoptosis. Oncogene 2003; 22: 9041–9047.

    Article  CAS  Google Scholar 

  21. Rossi A, Elia G, Santoro MG . Activation of the heat shock factor 1 by serine protease inhibitors. An effect associated with nuclear factor-kappaB inhibition. J Biol Chem 1998; 273: 16446–16452.

    Article  CAS  Google Scholar 

  22. Amici C, Belardo G, Rossi A, Santoro MG . Activation of I kappa B kinase by herpes simplex virus type 1. A novel target for anti-herpetic therapy. J Biol Chem 2001; 276: 28759–28766.

    Article  CAS  Google Scholar 

  23. Piva R, Ruggeri B, Williams M, Costa G, Tamagno I, Ferrero D et al. CEP-18770: a novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib. Blood 2008; 111: 2765–2775.

    Article  CAS  Google Scholar 

  24. Piva R, Gianferretti P, Ciucci A, Taulli R, Belardo G, Santoro MG . 15-deoxy-D12,14-prostaglandin J2 induces apoptosis in human malignant B-cells: an effect associated with inhibition of NF-κB activity and down-regulation of anti-apoptotic proteins. Blood 2005; 105: 1750–1758.

    Article  CAS  Google Scholar 

  25. Rossi A, Kapahi P, Natoli G, Takahashi T, Chen Y, Karin M et al. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. Nature 2000; 403: 103–108.

    Article  CAS  Google Scholar 

  26. Mosser DD, Theodorakis NG, Morimoto RI . Coordinate changes in heat shock element-binding activity and HSP70 gene transcription rates in human cells. Mol Cell Biol 1988; 8: 4736–4744.

    Article  CAS  Google Scholar 

  27. Ciucci A, Gianferretti P, Piva R, Guyot T, Snape TJ, Roberts SM et al. Induction of apoptosis in estrogen receptor-negative breast cancer cells by natural and synthetic cyclopentenones: role of the IkappaB kinase/nuclear factor-kappaB pathway. Mol Pharmacol 2006; 70: 1812–1821.

    Article  CAS  Google Scholar 

  28. Kanda K, Hu HM, Zhang L, Grandchamps J, Boxer LM . NF-kappaB activity is required for the deregulation of c-myc expression by the immunoglobulin heavy chain enhancer. J Biol Chem 2000; 275: 32338–32346.

    Article  CAS  Google Scholar 

  29. Wu C . Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 1995; 11: 441–469.

    Article  CAS  Google Scholar 

  30. Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T et al. The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol 2002; 43: 33–56.

    Article  Google Scholar 

  31. Dave SS, Fu K, Wright GW, Lam LT, Kluin P, Boerma EJ et al. Molecular diagnosis of Burkitt's lymphoma. N Engl J Med 2006; 354: 2431–2442.

    Article  CAS  Google Scholar 

  32. Hummel M, Bentink S, Berger H, Klapper W, Wessendorf S, Barth TF et al. A biologic definition of Burkitt's lymphoma from transcriptional and genomic profiling. N Engl J Med 2006; 354: 2419–2430.

    Article  CAS  Google Scholar 

  33. Ngo VN, Davis RE, Lamy L, Yu X, Zhao H, Lenz G et al. A loss-of-function RNA interference screen for molecular targets in cancer. Nature 2006; 441: 106–110.

    Article  CAS  Google Scholar 

  34. Santoro MG . Heat shock factors and the control of the stress response. Biochem Pharmacol 2000; 59: 55–63.

    Article  CAS  Google Scholar 

  35. Ran R, Lu A, Zhang L, Tang Y, Zhu H, Xu H et al. Hsp70 promotes TNF-mediated apoptosis by binding IKK gamma and impairing NF-kappa B survival signaling. Genes Dev 2004; 18: 1466–1481.

    Article  CAS  Google Scholar 

  36. Frelin C, Imbert V, Bottero V, Gonthier N, Samraj AK, Schulze-Osthoff K et al. Inhibition of the NF-kappaB survival pathway via caspase-dependent cleavage of the IKK complex scaffold protein and NF-kappaB essential modulator NEMO. Cell Death Differ 2008; 1: 152–160.

    Article  Google Scholar 

  37. Vaux DL, Silke J . IAPs, RINGs and ubiquitylation. Nat Rev Mol Cell Biol 2005; 6: 287–297.

    Article  CAS  Google Scholar 

  38. Dürkop H, Hirsh B, Hahn C, Stein H . cIAP2 is highly expressed in Hodgkin-Reed-Sternberg cells and inhibits apoptosis by interfering with constitutively active caspase-3. J Mol Med 2006; 84: 132–141.

    Article  Google Scholar 

  39. Varfolomeev E, Blankenship JW, Wayson SM, Fedorova AV, Kayagaki N, Garg P et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 2007; 131: 669–681.

    Article  CAS  Google Scholar 

  40. Kashkar H, Haefs C, Shin H, Hamilton-Dutoit SJ, Salvesen GS, Kronke M et al. XIAP-mediated caspase inhibition in Hodgkin's lymphoma–derived B cells. J Exp Med 2003; 198: 341–347.

    Article  CAS  Google Scholar 

  41. Ghosh S . Regulation of inducible gene expression by the transcription factor NF-kappaB. Immunol Res 1999; 19: 183–189.

    Article  CAS  Google Scholar 

  42. Hideshima T, Richardson P, Chauhan D, Palombella VJ, Elliott PJ, Adams J et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 2001; 61: 3071–3076.

    CAS  Google Scholar 

  43. Beere HM . Death versus survival: functional interaction between the apoptotic and stress-inducible heat shock protein pathways. J Clin Invest 2005; 115: 2633–2639.

    Article  CAS  Google Scholar 

  44. Mosser DD, Morimoto RI . Molecular chaperones and the stress of oncogenesis. Oncogene 2004; 23: 2907–2918.

    Article  CAS  Google Scholar 

  45. Westerheide SD, Kawahara TL, Orton K, Morimoto RI . Triptolide, an inhibitor of the human heat shock response that enhances stress-induced cell death. J Biol Chem 2006; 281: 9616–9622.

    Article  CAS  Google Scholar 

  46. Zaarur N, Gabai V, Porco JA, Calderwood S, Sherman MY . Targeting heat shock response to sensitize cancer cells to proteasome and Hsp90 inhibitors. Cancer Res 2006; 66: 1783–1791.

    Article  CAS  Google Scholar 

  47. Rossi A, Ciafrè S, Balsamo M, Pierimarchi P, Santoro MG . Targeting the heat shock factor 1 by RNA interference: a potent tool to enhance hyperthermochemotherapy efficacy in cervical cancer. Cancer Res 2006; 66: 7678–7685.

    Article  CAS  Google Scholar 

  48. Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H et al. Hyperthermia in combined treatment of cancer. Lancet Oncol 2002; 3: 487–497.

    Article  CAS  Google Scholar 

  49. Takahashi I, Emi Y, Hasuda S, Kakeji Y, Maehara Y, Sugimachi K . Clinical application of hyperthermia combined with anticancer drugs for the treatment of solid tumors. Surgery 2002; 131: S48–S54.

    Article  Google Scholar 

  50. Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Richardson PG, Hideshima T et al. Biologic sequelae of nuclear factor-kappaB blockade in multiple myeloma: therapeutic applications. Blood 2002; 99: 4079–4086.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Italian Ministry of University and Scientific Research (MIUR), the Italian Ministry of Public Health (ISS projects Lotta ai Tumori), the EU EICOSANOX project and Regione Piemonte (A361 Project). We thank Dr Cristina Ferreri for technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M G Santoro.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belardo, G., Piva, R. & Santoro, M. Heat stress triggers apoptosis by impairing NF-κB survival signaling in malignant B cells. Leukemia 24, 187–196 (2010). https://doi.org/10.1038/leu.2009.227

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.227

Keywords

This article is cited by

Search

Quick links