Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cytogenetics and Molecular Genetics

DNA copy-number abnormalities do not occur in infant ALL with t(4;11)/MLL-AF4

Abstract

The pathogenesis of infant acute lymphoblastic leukemia (ALL) is still not well defined. Short latency to leukemia and very high concordance rate for ALL in Mixed-Lineage Leukemia (MLL)-positive infant twins suggest that the MLL rearrangement itself could be sufficient for overt leukemia. Attempts to generate a suitable mouse model for MLL-AF4-positive ALL did not thoroughly resolve the issue of whether cooperating mutations are required to reduce latency and to generate overt leukemia in vivo. In this study, we applied single-nucleotide polymorphism array technology to perform genomic profiling of 28 infant ALL cases carrying t(4;11) to detect MLL-cooperating aberrations hidden to conventional techniques and to gain new insights into infant ALL pathogenesis. In contrast to pediatric, adolescent and adult ALL cases, the MLL rearrangement in infant ALL is associated with an exceptionally low frequency of copy-number abnormalities, thus confirming the unique nature of this disease. By contrast, additional genetic aberrations are acquired at disease relapse. Small-segmental uniparental disomy traits were frequently detected, mostly constitutional, and widely distributed throughout the genome. It can be argued that the MLL rearrangement as a first hit, rather than inducing the acquisition of additional genetic lesions, has a major role to drive and hasten the onset of leukemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Biondi A, Cimino G, Pieters R, Pui CH . Biological and therapeutic aspects of infant leukaemia. Blood 2000; 96: 24–33.

    CAS  Google Scholar 

  2. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukaemia. Nat Genet 2002; 30: 41–47.

    Article  CAS  Google Scholar 

  3. Pieters R, Schrappe M, De Lorenzo P, Hann I, De Rossi G, Felice M et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 2007; 370: 198–200.

    Article  Google Scholar 

  4. Pui CH, Chessells JM, Camitta B, Baruchel A, Biondi A, Boyett JM et al. Clinical heterogeneity in childhood acute lymphoblastic leukemia with 11q23 rearrangements. Leukemia 2003; 17: 700–706.

    Article  CAS  Google Scholar 

  5. Hilden JM, Dinndorf PA, Meerbaum SO, Sather H, Villaluna D, Heerema NA et al. Analysis of prognostic factors of acute lymphoblastic leukemia in infants: report on CCG 1953 from the Children's Oncology Group. Blood 2006; 108: 441–451.

    Article  CAS  Google Scholar 

  6. Tomizawa D, Koh K, Sato T, Kinukawa N, Morimoto A, Isoyama K et al. Outcome of risk-based therapy for infant acute lymphoblastic leukemia with or without an MLL gene rearrangement, with emphasis on late effects: a final report of two consecutive studies, MLL96 and MLL98, of the Japan Infant Leukemia Study Group. Leukemia 2007; 21: 2258–2263.

    Article  CAS  Google Scholar 

  7. Ford AM, Ridge SA, Cabrera ME, Mahmoud H, Steel CM, Chan LC et al. In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature 1993; 363: 358–360.

    Article  CAS  Google Scholar 

  8. Greaves MF, Wiemels J . Origins of chromosome translocations in childhood leukaemia. Nature Rev Cancer 2003; 3: 639–649.

    Article  CAS  Google Scholar 

  9. Metzler M, Forster A, Pannell R, Arends MJ, Daser A, Lobato MN et al. A conditional model of MLL-AF4 B-cell tumourigenesis using invertor technology. Oncogene 2006; 25: 3093–3103.

    Article  CAS  Google Scholar 

  10. Chen W, Li Q, Hudson WA, Kumar A, Kirchhof N, Kersey JH . A murine Mll-AF4 knock-in model results in lymphoid and myeloid deregulation and hematologic malignancy. Blood 2006; 108: 669–677.

    Article  CAS  Google Scholar 

  11. Ono R, Nakajima H, Ozaki K, Kumagai H, Kawashima T, Taki T et al. Dimerization of MLL fusion proteins and FLT3 activation synergize to induce multiple lineage leukemogenesis. J Clin Invest 2005; 115: 919–929.

    Article  CAS  Google Scholar 

  12. Krivtsov AV, Feng Z, Lemieux ME, Faber J, Vempati S, Sinha AU et al. H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell 2008; 14: 355–368.

    Article  CAS  Google Scholar 

  13. Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007; 446: 758–764.

    Article  CAS  Google Scholar 

  14. Kuiper RP, Schoenmakers EF, van Reijmersdal SV, Hehir-Kwa JY, van Kessel AG, van Leeuwen FN et al. High-resolution genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lymphocyte differentiation and cell cycle progression. Leukemia 2007; 21: 1258–1266.

    Article  CAS  Google Scholar 

  15. Kawamata N, Ogawa S, Zimmermann M, Kato M, Sanada M, Hemminki K et al. Molecular allelokaryotyping of pediatric acute lymphoblastic leukemias by high resolution single nucleotide polymorphism oligonucleotide genomic microarray. Blood 2008; 111: 776–784.

    Article  CAS  Google Scholar 

  16. Paulsson K, Cazier JB, Macdougall F, Stevens J, Stasevich I, Vrcelj N et al. Microdeletions are a general feature of adult and adolescent acute lymphoblastic leukemia: unexpected similarities with pediatric disease. Proc Natl Acad Sci USA 2008; 105: 6708–6713.

    Article  CAS  Google Scholar 

  17. Robinson WP . Mechanisms leading to uniparental disomy and their clinical consequences. Bioessays 2000; 22: 452–459.

    Article  CAS  Google Scholar 

  18. Morison IM, Ellis LM, Teague LR, Reeve AE . Preferential loss of maternal 9p alleles in childhood acute lymphoblastic leukaemia. Blood 2002; 99: 375–377.

    Article  CAS  Google Scholar 

  19. Raghavan M, Lillington DM, Skoulakis S, Debernardi S, Chaplin T, Foot NJ et al. Genome-wide single nucleotide polymorphism analysis reveals frequent partial uniparental disomy due to somatic recombination in acute myeloid leukemias. Cancer Res 2005; 65: 375–378.

    CAS  Google Scholar 

  20. Stephens K, Weaver M, Leppig KA, Maruyama K, Emanuel PD, Le Beau MM et al. Interstitial uniparental isodisomy at clustered breakpoint intervals is a frequent mechanism of NF1 inactivation in myeloid malignancies. Blood 2006; 108: 1684–1689.

    Article  CAS  Google Scholar 

  21. Li LH, Ho SF, Chen CH, Wei CY, Wong WC, Li LY et al. Long contiguous stretches of homozygosity in the human genome. Hum Mutat 2006; 27: 1115–1121.

    Article  CAS  Google Scholar 

  22. Gibson J, Morton NE, Collins A . Extended tracts of homozygosity in outbred human populations. Hum Mol Genet 2006; 15: 789–795.

    Article  CAS  Google Scholar 

  23. Lencz T, Lambert C, DeRosse P, Burdick KE, Morgan TV, Kane JM et al. Runs of homozygosity reveal highly penetrant recessive loci in schizophrenia. Proc Natl Acad Sci USA 2007; 104: 19942–19947.

    Article  CAS  Google Scholar 

  24. Miyazawa H, Kato M, Awata T, Kohda M, Iwasa H, Koyama N et al. Homozygosity haplotype allows a genome-wide search for the autosomal segments shared among patients. Am J Hum Genet 2007; 80: 1090–1102.

    Article  CAS  Google Scholar 

  25. Huqun, Izumi S, Miyazawa H, Ishii K, Uchiyama B, Ishida T et al. Mutations in the SLC34A2 gene are associated with pulmonary alveolar microlithiasis. Am J Respir Crit Care Med 2007; 175: 263–268.

    Article  CAS  Google Scholar 

  26. Zangrando A, Dell’orto MC, Te Kronnie G, Basso G . MLL rearrangements in pediatric acute lymphoblastic and myeloblastic leukemias: MLL specific and lineage specific signatures. BMC Med Genomics 2009; 2: 36–47.

    Article  Google Scholar 

  27. Bungaro S, Dell’Orto MC, Zangrando A, Basso D, Gorletta T, Lo Nigro L et al. Integration of genomic and gene expression data of childhood ALL without known aberrations identifies subgroups with specific genetic hallmarks. Genes Chromosomes Cancer 2009; 48: 22–38.

    Article  CAS  Google Scholar 

  28. Mullighan CG, Phillips LA, Su X, Ma J, Miller CB, Shurtleff SA et al. Genomic analysis of the clonal origins of relapsed acute lymphoblastic leukemia. Science 2008; 322: 1377–1380.

    Article  CAS  Google Scholar 

  29. Guenther MG, Lawton LN, Rozovskaia T, Frampton GM, Levine SS, Volkert TL et al. Aberrant chromatin at genes encoding stem cell regulators in human mixed-lineage leukemia. Genes Dev 2008; 22: 3403–3408.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Tatiana Gorletta and Angela Papagna (‘Genopolis’ Consortium, University of Milan-Bicocca, Milan, Italy) for array hybridization. We are grateful to the Italian ‘Interfant Task Force’ and all Italian clinicians for collecting and sending patient samples. This study was partially supported by financial grants from FIRB-MIUR ‘Genopolis’ n.RBLA038RMA_005 and FIRB-MIUR n.RBLA03ER38; Associazione Italiana per la Ricerca sul Cancro (AIRC), grant n.4342_2006 (to GC) and 2690_2004/06 (to AB); the Italian Foundation for Cancer Research (FIRC) fellowship ‘David Raffaelli’ to MB, Grant Ric.Corrente OBG 2006/02/R/001822 (to GDR); Fondazione Cariplo, Fondazione ‘M.Tettamanti’-Monza and Fondazione ‘Città della Speranza’-Padova. GC designed the research and supervised the contribution of all the authors; MB performed the research and wrote the paper, with support of GC; RS, SB, EM, IC, and CB conducted the SNP array analyses and contributed to the writing of the paper. LC and GF performed additional molecular screenings, MG performed gene expression analysis, GB is responsible of the National cell bank and conducted FISH screening, GDR and AB are the National responsible of the Interfant protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Biondi.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bardini, M., Spinelli, R., Bungaro, S. et al. DNA copy-number abnormalities do not occur in infant ALL with t(4;11)/MLL-AF4. Leukemia 24, 169–176 (2010). https://doi.org/10.1038/leu.2009.203

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.203

Keywords

This article is cited by

Search

Quick links