Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

GATA-1 and GATA-2 binding to 3′ enhancer of WT1 gene is essential for its transcription in acute leukemia and solid tumor cell lines

Abstract

Although oncogenic functions and the clinical significance of Wilms tumor 1 (WT1) have been extensively studied in acute leukemia, the regulatory mechanism of its transcription still remains to be determined. We found a significant correlation among the amounts of WT1, GATA-1 and GATA-2 mRNAs from leukemia and solid tumor cell lines. Overexpression and small interfering RNA (siRNA) transfection experiments of GATA-1 and GATA-2 showed that these GATA transcription factors could induce WT1 expression. Promoter analysis showed that the 5′ promoter did not explain the different WT1 mRNA levels between cell lines. The 3′ enhancer, especially the distal sites out of six putative GATA binding sites located within the region, but not the intron 3 enhancer, were essential for the WT1 mRNA level. Electrophoretic mobility shift assay (EMSA) showed both GATA-1 and GATA-2 bound to these GATA sites. Besides acute leukemia cell lines, solid tumor cell lines including, TYK-nu-cPr also showed a high level of WT1 mRNA. We showed that GATA-2 expression is a determinant of WT1 mRNA expression in both TYK-nu-cPr cells and HL60 cells without GATA-1 expression. Taken together, these results suggest that GATA-1 and/or GATA-2 binding to a GATA site of the 3′ enhancer of WT1 played an important role in WT1 gene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hewitt SM, Hamada S, McDonnell TJ, Rauscher III FJ, Saunder GF . Regulation of the proto-oncogenes bcl-2 and c-myc by the Wilms’ tumor suppressor gene, WT1. Cancer Res 1995; 55: 5386–5389.

    CAS  PubMed  Google Scholar 

  2. Lou XN, Reddy JC, Yeyeti PL, Idris AH, Hosono S, Haber DA et al. The tumor suppressor gene WT1 inhibits ras-mediated transformation. Oncogene 1995; 11: 743–750.

    Google Scholar 

  3. Keilholz U, Menssen HD, Gaiger A, Menke A, Oji Y, Oka J et al. Wilms’ tumour gene 1 (WT1) in human neoplasia. Leukemia 2005; 19: 13181–13323.

    Article  Google Scholar 

  4. Haber DA, Sohn RL, Buckler AJ, Pelletier J, Call KM, Housman DE . Alternative splicing and genomic structure of the Wilms tumor gene WT1. Proc Natl Acad Sci USA 1991; 88: 9618–9622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Loeb DM . WT1 influences apoptosis through transcriptional regulation of Bcl-2 family members. Cell Cycle 2006; 5: 1249–1253.

    Article  CAS  PubMed  Google Scholar 

  6. Jomgeow T, Oji Y, Tsuji N, Ikeda Y, Ito K, Tsuda A et al. Wilms’ tumor gene WT1 17AA(−)/KTS(−) isoform induces morphological changes and promotes cell migration and invasion in vitro. Cancer Sci 2006; 97: 259–270.

    Article  CAS  PubMed  Google Scholar 

  7. Ito K, Oji Y, Tatsumi N, Shimizu S, Kanai Y, Nakazawa T et al. Antiapoptotic function of 17AA(+) WT1 (Wilms’ tumor gene) isoforms on the intrinsic apoptosis pathway. Oncogene 2006; 25: 4217–4229.

    Article  CAS  PubMed  Google Scholar 

  8. Oji Y, Ogawa H, Tamaki H, Oka Y, Tsuboi A, Kim EM et al. Expression of the Wilms’ tumor gene WT1 in solid tumors and its involvement in tumor cell growth. Int J Cancer Res 1999; 90: 194–204.

    CAS  Google Scholar 

  9. Boublikova L, Kalinova M, Ryan J, Quinn F, O’Marcaigh A, Smith O et al. Wilms’ tumor gene 1 (WT1) expression in childhood acute lymphoblastic leukemia: a wide range of WT1 expression levels, its impact on prognosis and minimal residual disease monitoring. Leukemia 2006; 20: 254–263.

    Article  CAS  PubMed  Google Scholar 

  10. Tamaki H, Ogawa H, Ohyashiki K, Ohyashiki JH, Iwama H, Inoue K et al. The Wilms’ tumor gene WT1 is a good marker for diagnosis of disease progression of myelodysplastic syndromes. Leukemia 1999; 13: 393–399.

    Article  CAS  PubMed  Google Scholar 

  11. Weisser M, Kern W, Rauhut S, Schoch C, Hiddemann W, Haferlach T et al. Prognostic impact of RT-PCR-based quantification of WT1 gene expression during MRD monitoring of acute myeloid leukemia. Leukemia 2005; 19: 1416–1423.

    Article  CAS  PubMed  Google Scholar 

  12. Yang L, Han Y, Suarez Saiz F, Minden MD . A tumor suppressor and oncogene: the WT1 story. Leukemia 2007; 21: 868–876.

    Article  CAS  PubMed  Google Scholar 

  13. Cohen HT, Bossone SA, Zhu G, McDonald GA, Sukhatme VP . Sp1 is a critical regulator of the Wilms’ tumor-1 gene. J Biol Chem 1997; 272: 2901–2913.

    Article  CAS  PubMed  Google Scholar 

  14. Fraizer GC, Wu YJ, Hewitt SM, Maity T, Yon CC, Huff V et al. Transcriptional regulation of the human Wilms’ tumor gene (WT1): cell type-specific enhancer and promiscuous promoter. J Biol Chem 1994; 269: 8892–8900.

    CAS  PubMed  Google Scholar 

  15. Wu Y, Fraizer GC, Saunders GF . GATA-1 transactivates the WT1 hematopoietic specific enhancer. J Biol Chem 1995; 270: 5944–5949.

    Article  CAS  PubMed  Google Scholar 

  16. Hosen N, Yanagihara M, Nakazawa T, Kanato K, Nishida S, Asada T et al. Identification of a gene element essential for leukemia-specific expression of transgenes. Leukemia 2004; 18: 415–419.

    Article  CAS  PubMed  Google Scholar 

  17. Dehbi M, Pelletier J . PAX-8-mediated activation of the wt1 tumor suppressor gene. EMBO J 1996; 15: 4297–4306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Siehl JM, Thiel E, Heufelder K, Snarski E, Schwartz S, Mailander V et al. Possible regulation of Wilms’ tumour gene 1 (WT1) expression by the paired box genes PAX2 and PAX8 and by the haematopoietic transcription factor GATA-1 in human acute myeloid leukaemias. Br J Haematol 2003; 123: 235–242.

    Article  CAS  PubMed  Google Scholar 

  19. Fraizer GC, Shimamura R, Zhang X, Saunders GF . PAX 8 regulates human WT1 transcription through a novel DNA binding site. J Biol Chem 1997; 272: 30678–30687.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang X, Xing G, Fraizer GC, Saunders F . Transactivation of an intronic hematopoietic-specific enhancer of the human Wilms’ tumor 1 gene by GATA-1 and c-Myb. J Biol Chem 1997; 272: 29272–29280.

    Article  CAS  PubMed  Google Scholar 

  21. Ohneda K, Yamamoto M . Roles of hematopoietic transcription factors GATA-1 and GATA-2 in the development of red blood cell lineage. Acta Hematol 2002; 108: 237–245.

    Article  CAS  Google Scholar 

  22. Weiss MJ, Orkin SH . GATA transcription factors: key regulators of hematopoiesis. Exp Hematol 1995; 23: 99–107.

    CAS  PubMed  Google Scholar 

  23. Shimamoto T, Ohyashiki K, Ohyashiki JH, Kawakubo K, Fujimura T, Iwama H et al. The expression pattern of erythrocyte/megakaryocyte-related transcription factor GATA-1 and the stem cell leukemia gene correlates with hematopoietic differentiation and is associated with outcome of acute myeloid leukemia. Blood 1995; 86: 3173–3180.

    CAS  PubMed  Google Scholar 

  24. Iwasaki T, Sugisaki C, Nagata K, Takagi A, Kojima T, Ito M et al. Wilms’ tumor 1 message and protein expression in bone marrow failure syndrome and acute leukemia. Pathol Int 2007; 57: 645–651.

    Article  CAS  PubMed  Google Scholar 

  25. Sobue S, Iwasaki T, Sugisaki S, Nagata K, Kikuchi R, Murakami M et al. Quantitative RT-PCR analysis of sphingolipid metabolic enzymes in acute leukemia and myelodysplastic syndromes. Leukemia 2006; 20: 2042–2046.

    Article  CAS  PubMed  Google Scholar 

  26. Kikuchi R, Murakami M, Sobue S, Iwasaki T, Hagiwara K, Takagi A et al. Ewing's sarcoma fusion protein, EWS/Fli-1 and Fli-1 protein induce PLD2 but not PLD1 gene expression by binding to an ETS domain of 5′ promoter. Oncogene 2007; 26: 1802–1810.

    Article  CAS  PubMed  Google Scholar 

  27. Ho IC, Vorhees P, Marin N, Oakley BK, Tsai SF, Orkin SH et al. Human GATA-3: a lineage-restricted transcription factor that regulates the expression of the T cell receptor alpha gene. EMBO J 1991; 10: 1187–1192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ko L, Yamamoto M, Leonard MW, George KM, Ting P, Engel JD . Murine and human T-lymphocyte GATA-3 factors mediate transcription through a cis-regulatory element within the human T-cell receptor delta gene enhancer. Mol Cell Biol 1991; 11: 2778–2784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tagge EP, Hanson P, Re GG, Othersen Jr HB, Smith CD, Garvin AJ . Paired box gene expression in Wilms’ tumor. J Pediatr Surg 1994; 29: 134–141.

    Article  CAS  PubMed  Google Scholar 

  30. Dressler GR, Douglas EC . Pax-2 is a DNA-binding protein expressed in embryonic kidney and Wilms tumor. Proc Natl Acad Sci USA 1992; 89: 1179–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hosen N, Sonoda Y, Oji Y, Kimura T, Minamiguchi H, Tamaki H et al. Very low frequencies of human normal CD34+ haematopoietic progenitor cells express the Wilms’ tumor gene WT1 at levels similar to those in leukemia cells. Br J Haematol 2002; 116: 409–420.

    Article  CAS  PubMed  Google Scholar 

  32. Mouthon MA, Bernard O, Mitjavila MT, Romeo PH, Vainshenker W, Mathieu-Mahul D . Expression of tal-1 and GATA-binding proteins during human hematopoiesis. Blood 1993; 81: 647–655.

    CAS  PubMed  Google Scholar 

  33. Maratheftis CI, Bolaraki PE, Voulgarelis M . GATA-1 transcription factor is up-regulated in bone marrow hematopoietic progenitor CD34(+) and erythroid CD71(+) cells in myelodysplastic syndromes. Am J Hematol 2007; 82: 887–892.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to Dr H Nagai and Ms K Hagiwara (National Hospital Organization, Nagoya Medical Center, Nagoya, Japan) and to Dr Y Oji and Dr H Sugiyama (Osaka University Graduate School of Medicine, Osaka, Japan) for providing us with cell lines and useful comments. We acknowledge Ms Y Nomura for her excellent cell-sorting work. This work was supported in part by a Grant-in-Aid for Basic Research C 16590453 and by Health and Labour Research Grants from the Ministry of Health, Labour and Welfare, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Murate.

Additional information

Supplementary information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furuhata, A., Murakami, M., Ito, H. et al. GATA-1 and GATA-2 binding to 3′ enhancer of WT1 gene is essential for its transcription in acute leukemia and solid tumor cell lines. Leukemia 23, 1270–1277 (2009). https://doi.org/10.1038/leu.2009.13

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.13

Keywords

This article is cited by

Search

Quick links