Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Immunology

SDF-1 and PDGF enhance αvβ5-mediated ERK activation and adhesion-independent growth of human pre-B cell lines

Abstract

CD23 acts through the αvβ5 integrin to promote growth of human pre-B cell lines in an adhesion-independent manner. αvβ5 is expressed on normal B-cell precursors in the bone marrow. Soluble CD23 (sCD23), short CD23-derived peptides containing the arg-lys-cys (RKC) motif recognized by αvβ5 and anti-αvβ5 monoclonal antibodies (MAbs) all sustain growth of pre-B cell lines. The chemokine stromal cell-derived factor-1 (SDF-1) regulates key processes during B-cell development. SDF-1 enhanced the growth-sustaining effect driven by ligation of αvβ5 with anti-αvβ5 MAb 15F-11, sCD23 or CD23-derived RKC-containing peptides. This effect was restricted to B-cell precursors and was specific to SDF-1. The enhancement in growth was associated with the activation of extracellular signal-regulated kinase (ERK) and both these responses were attenuated by the MEK inhibitor U0126. Finally, platelet-derived growth factor also enhanced both αvβ5-mediated cell growth and ERK activation. The data suggest that adhesion-independent growth-promoting signals delivered to B-cell precursors through the αvβ5 integrin can be modulated by cross-talk with receptors linked to both G-protein and tyrosine kinase-coupled signalling pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. LeBien TW . Fates of human B-cell precursors. Blood 2000; 96: 9–23.

    CAS  PubMed  Google Scholar 

  2. Borland G, Edkins AL, Acharya M, Matheson J, White LJ, Allen JM et al. alphavbeta5 integrin sustains growth of human pre-B cells through an RGD-independent interaction with a basic domain of the CD23 protein. J Biol Chem 2007; 282: 27315–27326.

    Article  CAS  PubMed  Google Scholar 

  3. White LJ, Ozanne BW, Graber P, Aubry JP, Bonnefoy JY, Cushley W . Inhibition of apoptosis in a human pre-B-cell line by CD23 is mediated via a novel receptor. Blood 1997; 90: 234–243.

    CAS  PubMed  Google Scholar 

  4. Lecoanet-Henchoz S, Gauchat JF, Aubry JP, Graber P, Life P, Paul-Eugene N et al. CD23 regulates monocyte activation through a novel interaction with the adhesion molecules CD11b-CD18 and CD11c-CD18. Immunity 1995; 3: 119–125.

    Article  CAS  PubMed  Google Scholar 

  5. Lecoanet-Henchoz S, Plater-Zyberk C, Graber P, Gretener D, Aubry JP, Conrad DH et al. Mouse CD23 regulates monocyte activation through an interaction with the adhesion molecule CD11b/CD18. Eur J Immunol 1997; 27: 2290–2294.

    Article  CAS  PubMed  Google Scholar 

  6. Hermann P, Armant M, Brown E, Rubio M, Ishihara H, Ulrich D et al. The vitronectin receptor and its associated CD47 molecule mediates proinflammatory cytokine synthesis in human monocytes by interaction with soluble CD23. J Cell Biol 1999; 144: 767–775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu YJ, Cairns JA, Holder MJ, Abbot SD, Jansen KU, Bonnefoy JY et al. Recombinant 25-kDa CD23 and interleukin 1 alpha promote the survival of germinal center B cells: evidence for bifurcation in the development of centrocytes rescued from apoptosis. Eur J Immunol 1991; 21: 1107–1114.

    Article  CAS  PubMed  Google Scholar 

  8. Bonnefoy JY, Lecoanet-Henchoz S, Aubry JP, Gauchat JF, Graber P . CD23 and B-cell activation. Curr Opin Immunol 1995; 7: 355–359.

    Article  CAS  PubMed  Google Scholar 

  9. Aubry JP, Pochon S, Graber P, Jansen KU, Bonnefoy JY . CD21 is a ligand for CD23 and regulates IgE production. Nature 1992; 358: 505–507.

    Article  CAS  PubMed  Google Scholar 

  10. Bansal A, Roberts T, Hay EM, Kay R, Pumphrey RS, Wilson PB . Soluble CD23 levels are elevated in the serum of patients with primary Sjogren's syndrome and systemic lupus erythematosus. Clin Exp Immunol 1992; 89: 452–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sarfati M . CD23 and chronic lymphocytic leukemia. Blood Cells 1993; 19: 591–596; discussion 597–9.

    CAS  PubMed  Google Scholar 

  12. Hynes RO . Integrins: bidirectional, allosteric signaling machines. Cell 2002; 110: 673–687.

    Article  CAS  PubMed  Google Scholar 

  13. Kumar CC . Signaling by integrin receptors. Oncogene 1998; 17 (11 Reviews): 1365–1373.

    Article  CAS  PubMed  Google Scholar 

  14. Ruoslahti E . RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 1996; 12: 697–715.

    Article  CAS  PubMed  Google Scholar 

  15. Ashley DM, Bol SJ, Kannourakis G . Human bone marrow stromal cell contact and soluble factors have different effects on the survival and proliferation of paediatric B-lineage acute lymphoblastic leukaemic blasts. Leuk Res 1994; 18: 337–346.

    Article  CAS  PubMed  Google Scholar 

  16. Bradstock K, Makrynikola V, Bianchi A, Byth K . Analysis of the mechanism of adhesion of precursor-B acute lymphoblastic leukemia cells to bone marrow fibroblasts. Blood 1993; 82: 3437–3444.

    CAS  PubMed  Google Scholar 

  17. Manabe A, Coustan-Smith E, Behm FG, Raimondi SC, Campana D . Bone marrow-derived stromal cells prevent apoptotic cell death in B-lineage acute lymphoblastic leukemia. Blood 1992; 79: 2370–2377.

    CAS  PubMed  Google Scholar 

  18. Nagasawa T, Nakajima T, Tachibana K, Iizasa H, Bleul CC, Yoshie O et al. Molecular cloning and characterization of a murine pre-B-cell growth-stimulating factor/stromal cell-derived factor 1 receptor, a murine homolog of the human immunodeficiency virus 1 entry coreceptor fusin. Proc Natl Acad Sci USA 1996; 93: 14726–14729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Balabanian K, Lagane B, Infantino S, Chow KY, Harriague J, Moepps B et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem 2005; 280: 35760–35766.

    Article  CAS  PubMed  Google Scholar 

  20. Burns JM, Summers BC, Wang Y, Melikian A, Berahovich R, Miao Z et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med 2006; 203: 2201–2213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma Q, Jones D, Borghesani PR, Segal RA, Nagasawa T, Kishimoto T et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci USA 1998; 95: 9448–9453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 1996; 382: 635–638.

    Article  CAS  PubMed  Google Scholar 

  23. Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K, Kataoka Y et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 1998; 393: 591–594.

    Article  CAS  PubMed  Google Scholar 

  24. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR . Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998; 393: 595–599.

    Article  CAS  PubMed  Google Scholar 

  25. Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC . The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med 1997; 185: 111–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bleul CC, Fuhlbrigge RC, Casasnovas JM, Aiuti A, Springer TA . A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J Exp Med 1996; 184: 1101–1109.

    Article  CAS  PubMed  Google Scholar 

  27. Bradstock KF, Gottlieb DJ . Interaction of acute leukemia cells with the bone marrow microenvironment: implications for control of minimal residual disease. Leuk Lymphoma 1995; 18: 1–16.

    Article  CAS  PubMed  Google Scholar 

  28. Hartmann TN, Burger JA, Glodek A, Fujii N, Burger M . CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells. Oncogene 2005; 24: 4462–4471.

    Article  CAS  PubMed  Google Scholar 

  29. Hidalgo A, Sanz-Rodriguez F, Rodriguez-Fernandez JL, Albella B, Blaya C, Wright N et al. Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin-dependent adhesion to fibronectin and VCAM-1 on bone marrow hematopoietic progenitor cells. Exp Hematol 2001; 29: 345–355.

    Article  CAS  PubMed  Google Scholar 

  30. Liesveld JL, Dipersio JF, Abboud CN . Integrins and adhesive receptors in normal and leukemic CD34+ progenitor cells: potential regulatory checkpoints for cellular traffic. Leuk Lymphoma 1994; 14: 19–28.

    Article  CAS  PubMed  Google Scholar 

  31. Peled A, Kollet O, Ponomaryov T, Petit I, Franitza S, Grabovsky V et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 2000; 95: 3289–3296.

    CAS  PubMed  Google Scholar 

  32. Shen W, Bendall LJ, Gottlieb DJ, Bradstock KF . The chemokine receptor CXCR4 enhances integrin-mediated in vitro adhesion and facilitates engraftment of leukemic precursor-B cells in the bone marrow. Exp Hematol 2001; 29: 1439–1447.

    Article  CAS  PubMed  Google Scholar 

  33. Broxmeyer HE, Kim CH . Regulation of hematopoiesis in a sea of chemokine family members with a plethora of redundant activities. Exp Hematol 1999; 27: 1113–1123.

    Article  CAS  PubMed  Google Scholar 

  34. Nishii K, Katayama N, Miwa H, Shikami M, Masuya M, Shiku H et al. Survival of human leukaemic B-cell precursors is supported by stromal cells and cytokines: association with the expression of bcl-2 protein. Br J Haematol 1999; 105: 701–710.

    Article  CAS  PubMed  Google Scholar 

  35. Juarez J, Bendall L . SDF-1 and CXCR4 in normal and malignant hematopoiesis. Histol Histopathol 2004; 19: 299–309.

    CAS  PubMed  Google Scholar 

  36. Lataillade JJ, Clay D, Dupuy C, Rigal S, Jasmin C, Bourin P et al. Chemokine SDF-1 enhances circulating CD34(+) cell proliferation in synergy with cytokines: possible role in progenitor survival. Blood 2000; 95: 756–768.

    CAS  PubMed  Google Scholar 

  37. Arai A, Jin A, Yan W, Mizuchi D, Yamamoto K, Nanki T et al. SDF-1 synergistically enhances IL-3-induced activation of the Raf-1/MEK/Erk signaling pathway through activation of Rac and its effector Pak kinases to promote hematopoiesis and chemotaxis. Cell Signal 2005; 17: 497–506.

    Article  CAS  PubMed  Google Scholar 

  38. Bendall LJ, Baraz R, Juarez J, Shen W, Bradstock KF . Defective p38 mitogen-activated protein kinase signaling impairs chemotaxic but not proliferative responses to stromal-derived factor-1alpha in acute lymphoblastic leukemia. Cancer Res 2005; 65: 3290–3298.

    Article  CAS  PubMed  Google Scholar 

  39. Cheng ZJ, Zhao J, Sun Y, Hu W, Wu YL, Cen B et al. Beta-arrestin differentially regulates the chemokine receptor CXCR4-mediated signaling and receptor internalization, and this implicates multiple interaction sites between beta-arrestin and CXCR4. J Biol Chem 2000; 275: 2479–2485.

    Article  CAS  PubMed  Google Scholar 

  40. Dutt P, Wang JF, Groopman JE . Stromal cell-derived factor-1 alpha and stem cell factor/kit ligand share signaling pathways in hemopoietic progenitors: a potential mechanism for cooperative induction of chemotaxis. J Immunol 1998; 161: 3652–3658.

    CAS  PubMed  Google Scholar 

  41. Ganju RK, Brubaker SA, Meyer J, Dutt P, Yang Y, Qin S et al. The alpha-chemokine, stromal cell-derived factor-1alpha, binds to the transmembrane G-protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways. J Biol Chem 1998; 273: 23169–23175.

    Article  CAS  PubMed  Google Scholar 

  42. Lataillade JJ, Clay D, Bourin P, Herodin F, Dupuy C, Jasmin C et al. Stromal cell-derived factor 1 regulates primitive hematopoiesis by suppressing apoptosis and by promoting G(0)/G(1) transition in CD34(+) cells: evidence for an autocrine/paracrine mechanism. Blood 2002; 99: 1117–1129.

    Article  CAS  PubMed  Google Scholar 

  43. Wang JF, Park IW, Groopman JE . Stromal cell-derived factor-1alpha stimulates tyrosine phosphorylation of multiple focal adhesion proteins and induces migration of hematopoietic progenitor cells: roles of phosphoinositide-3 kinase and protein kinase C. Blood 2000; 95: 2505–2513.

    CAS  PubMed  Google Scholar 

  44. Eliceiri BP . Integrin and growth factor receptor crosstalk. Circ Res 2001; 89: 1104–1110.

    Article  CAS  PubMed  Google Scholar 

  45. Smith RG, Dev VG, Shannon Jr WA . Characterization of a novel human pre-B leukemia cell line. J Immunol 1981; 126: 596–602.

    CAS  PubMed  Google Scholar 

  46. Stong RC, Korsmeyer SJ, Parkin JL, Arthur DC, Kersey JH . Human acute leukemia cell line with the t(4;11) chromosomal rearrangement exhibits B lineage and monocytic characteristics. Blood 1985; 65: 21–31.

    CAS  PubMed  Google Scholar 

  47. Simonsen JL, Rosada C, Serakinci N, Justesen J, Stenderup K, Rattan SI et al. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol 2002; 20: 592–596.

    Article  CAS  PubMed  Google Scholar 

  48. Tsai LH, White L, Raines E, Ross R, Smith RG, Cushley W et al. Expression of platelet-derived growth factor and its receptors by two pre-B acute lymphocytic leukemia cell lines. Blood 1994; 83: 51–55.

    CAS  PubMed  Google Scholar 

  49. Hendrix CW, Flexner C, MacFarland RT, Giandomenico C, Fuchs EJ, Redpath E et al. Pharmacokinetics and safety of AMD-3100, a novel antagonist of the CXCR-4 chemokine receptor, in human volunteers. Antimicrob Agents Chemother 2000; 44: 1667–1673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schols D, Este JA, Henson G, De Clercq E . Bicyclams, a class of potent anti-HIV agents, are targeted at the HIV coreceptor fusin/CXCR-4. Antiviral Res 1997; 35: 147–156.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang WB, Navenot JM, Haribabu B, Tamamura H, Hiramatu K, Omagari A et al. A point mutation that confers constitutive activity to CXCR4 reveals that T140 is an inverse agonist and that AMD3100 and ALX40-4C are weak partial agonists. J Biol Chem 2002; 277: 24515–24521.

    Article  CAS  PubMed  Google Scholar 

  52. D'Apuzzo M, Rolink A, Loetscher M, Hoxie JA, Clark-Lewis I, Melchers F et al. The chemokine SDF-1, stromal cell-derived factor 1, attracts early stage B cell precursors via the chemokine receptor CXCR4. Eur J Immunol 1997; 27: 1788–1793.

    Article  CAS  PubMed  Google Scholar 

  53. Egawa T, Kawabata K, Kawamoto H, Amada K, Okamoto R, Fujii N et al. The earliest stages of B cell development require a chemokine stromal cell-derived factor/pre-B-cell growth-stimulating factor. Immunity 2001; 15: 323–334.

    Article  CAS  PubMed  Google Scholar 

  54. Fedyk ER, Ryyan DH, Ritterman I, Springer TA . Maturation decreases responsiveness of human bone marrow B lineage cells to stromal-derived factor 1 (SDF-1). J Leukoc Biol 1999; 66: 667–673.

    Article  CAS  PubMed  Google Scholar 

  55. Bajetto A, Bonavia R, Barbero S, Florio T, Costa A, Schettini G . Expression of chemokine receptors in the rat brain. Ann N Y Acad Sci 1999; 876: 201–209.

    Article  CAS  PubMed  Google Scholar 

  56. Barbero S, Bonavia R, Bajetto A, Porcile C, Pirani P, Ravetti JL et al. Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Res 2003; 63: 1969–1974.

    CAS  PubMed  Google Scholar 

  57. Juarez J, Baraz R, Gaundar S, Bradstock K, Bendall L . Interaction of interleukin-7 and interleukin-3 with the CXCL12-induced proliferation of B-cell progenitor acute lymphoblastic leukemia. Haematologica 2007; 92: 450–459.

    Article  CAS  PubMed  Google Scholar 

  58. Rezzonico R, Chicheportiche R, Imbert V, Dayer JM . Engagement of CD11b and CD11c beta2 integrin by antibodies or soluble CD23 induces IL-1beta production on primary human monocytes through mitogen-activated protein kinase-dependent pathways. Blood 2000; 95: 3868–3877.

    CAS  PubMed  Google Scholar 

  59. Rezzonico R, Imbert V, Chicheportiche R, Dayer JM . Ligation of CD11b and CD11c beta(2) integrins by antibodies or soluble CD23 induces macrophage inflammatory protein 1alpha (MIP-1alpha) and MIP-1beta production in primary human monocytes through a pathway dependent on nuclear factor-kappaB. Blood 2001; 97: 2932–2940.

    Article  CAS  PubMed  Google Scholar 

  60. Trink B, Wang G, Shahar M, Meydan N, Roifman CM . Functional platelet-derived growth factor-beta (PDGF-beta) receptor expressed on early B-lineage precursor cells. Clin Exp Immunol 1995; 102: 417–424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lin TH, Aplin AE, Shen Y, Chen Q, Schaller M, Romer L et al. Integrin-mediated activation of MAP kinase is independent of FAK: evidence for dual integrin signaling pathways in fibroblasts. J Cell Biol 1997; 136: 1385–1395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Renshaw MW, Ren XD, Schwartz MA . Growth factor activation of MAP kinase requires cell adhesion. EMBO J 1997; 16: 5592–5599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Green DR . Apoptotic pathways: the roads to ruin. Cell 1998; 94: 695–698.

    Article  CAS  PubMed  Google Scholar 

  64. Baron W, Shattil SJ, ffrench-Constant C . The oligodendrocyte precursor mitogen PDGF stimulates proliferation by activation of alpha(v)beta3 integrins. EMBO J 2002; 21: 1957–1966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MA and ALE were postgraduate scholars supported by the Wellcome Trust four-year PhD programme, Molecular Functions in Disease. BWO is supported by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Cushley.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acharya, M., Edkins, A., Ozanne, B. et al. SDF-1 and PDGF enhance αvβ5-mediated ERK activation and adhesion-independent growth of human pre-B cell lines. Leukemia 23, 1807–1817 (2009). https://doi.org/10.1038/leu.2009.126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.126

Keywords

This article is cited by

Search

Quick links