Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Histone acetylation and DNA demethylation of B cells result in a Hodgkin-like phenotype

Abstract

A unique feature of the tumor cells (Hodgkin/Reed-Sternberg (HRS)) of classical Hodgkin lymphoma (cHL) is the loss of their B-cell phenotype despite their B-cell origin. Several lines of evidence suggest that epigenomic events, especially promoter DNA methylation, are involved in this silencing of many B-cell-associated genes. Here, we show that DNA demethylation alone or in conjunction with histone acetylation is not able to reconstitute the B-cell-gene expression program in cultured HRS cells. Instead, combined DNA demethylation and histone acetylation of B-cell lines induce an almost complete extinction of their B-cell-expression program and a tremendous upregulation of numerous Hodgkin-characteristic genes, including key players such as Id2 known to be involved in the suppression of the B-cell phenotype. Since the upregulation of Hodgkin-characteristic genes and the extinction of the B-cell-expression program occurred simultaneously, epigenetic changes may also be responsible for the malignant transformation of cHL. The epigenetic upregulation of Hodgkin-characteristic genes thus plays—in addition to promoter DNA hypermethylation of B-cell-associated genes—a pivotal role for the reprogramming of HRS cells and explains why DNA demethylation alone is unable to reconstitute the B-cell-expression program in HRS cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Kanzler H, Kuppers R, Hansmann ML, Rajewsky K . Hodgkin and Reed-Sternberg cells in Hodgkin's disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J Exp Med 1996; 184: 1495–1505.

    Article  CAS  PubMed  Google Scholar 

  2. Marafioti T, Hummel M, Foss HD, Laumen H, Korbjuhn P, Anagnostopoulos I et al. Hodgkin and Reed-Sternberg cells represent an expansion of a single clone originating from a germinal center B-cell with functional immunoglobulin gene rearrangements but defective immunoglobulin transcription. Blood 2000; 95: 1443–1450.

    CAS  PubMed  Google Scholar 

  3. Seitz V, Hummel M, Marafioti T, Anagnostopoulos I, Assaf C, Stein H . Detection of clonal T-cell receptor gamma-chain gene rearrangements in Reed-Sternberg cells of classic Hodgkin disease. Blood 2000; 95: 3020–3024.

    CAS  PubMed  Google Scholar 

  4. Falini B, Stein H, Pileri S, Canino S, Farabbi R, Martelli MF et al. Expression of lymphoid-associated antigens on Hodgkin's and Reed-Sternberg cells of Hodgkin's disease. An immunocytochemical study on lymph node cytospins using monoclonal antibodies. Histopathology 1987; 11: 1229–1242.

    Article  CAS  PubMed  Google Scholar 

  5. Schwering I, Brauninger A, Klein U, Jungnickel B, Tinguely M, Diehl V et al. Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 2003; 101: 1505–1512.

    Article  CAS  PubMed  Google Scholar 

  6. Theil J, Laumen H, Marafioti T, Hummel M, Lenz G, Wirth T et al. Defective octamer-dependent transcription is responsible for silenced immunoglobulin transcription in Reed-Sternberg cells. Blood 2001; 97: 3191–3196.

    Article  CAS  PubMed  Google Scholar 

  7. Doerr JR, Malone CS, Fike FM, Gordon MS, Soghomonian SV, Thomas RK et al. Patterned CpG methylation of silenced B cell gene promoters in classical Hodgkin lymphoma-derived and primary effusion lymphoma cell lines. J Mol Biol 2005; 350: 631–640.

    Article  CAS  PubMed  Google Scholar 

  8. Ushmorov A, Leithauser F, Sakk O, Weinhausel A, Popov SW, Moller P et al. Epigenetic processes play a major role in B-cell-specific gene silencing in classical Hodgkin lymphoma. Blood 2006; 107: 2493–2500.

    Article  CAS  PubMed  Google Scholar 

  9. Mathas S, Janz M, Hummel F, Hummel M, Wollert-Wulf B, Lusatis S et al. Intrinsic inhibition of transcription factor E2A by HLH proteins ABF-1 and Id2 mediates reprogramming of neoplastic B cells in Hodgkin lymphoma. Nat Immunol 2006; 7: 207–215.

    Article  CAS  PubMed  Google Scholar 

  10. Renne C, Martin-Subero JI, Eickernjager M, Hansmann ML, Kuppers R, Siebert R et al. Aberrant expression of ID2, a suppressor of B-cell-specific gene expression, in Hodgkin's lymphoma. Am J Pathol 2006; 169: 655–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249–264.

    Article  PubMed  Google Scholar 

  12. Kuppers R, Klein U, Schwering I, Distler V, Brauninger A, Cattoretti G et al. Identification of Hodgkin and Reed-Sternberg cell-specific genes by gene expression profiling. J Clin Invest 2003; 111: 529–537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maglott D, Ostell J, Pruitt KD, Tatusova T . Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res 2005; 33: D54–D58.

    Article  CAS  PubMed  Google Scholar 

  14. Smyth GK . Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004; 3: 1–24, Article 3, e-pub 2004 Feb 12.

    Article  Google Scholar 

  15. Benjamini Y, Hochberg Y . Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 1995; 57: 289–300.

    Google Scholar 

  16. Forsberg EC, Downs KM, Christensen HM, Im H, Nuzzi PA, Bresnick EH . Developmentally dynamic histone acetylation pattern of a tissue-specific chromatin domain. Proc Natl Acad Sci USA 2000; 97: 14494–14499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB . Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 1999; 21: 103–107.

    Article  CAS  PubMed  Google Scholar 

  18. Carbone A, Gloghini A, Aldinucci D, Gattei V, Dalla-Favera R, Gaidano G . Expression pattern of MUM1/IRF4 in the spectrum of pathology of Hodgkin's disease. Br J Haematol 2002; 117: 366–372.

    Article  CAS  PubMed  Google Scholar 

  19. Janz M, Hummel M, Truss M, Wollert-Wulf B, Mathas S, Johrens K et al. Classical Hodgkin lymphoma is characterized by high constitutive expression of activating transcription factor 3 (ATF3), which promotes viability of Hodgkin/Reed-Sternberg cells. Blood 2006; 107: 2536–2539.

    Article  CAS  PubMed  Google Scholar 

  20. Jundt F, Anagnostopoulos I, Forster R, Mathas S, Stein H, Dorken B . Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood 2002; 99: 3398–3403.

    Article  CAS  PubMed  Google Scholar 

  21. Lund R, Ahlfors H, Kainonen E, Lahesmaa AM, Dixon C, Lahesmaa R . Identification of genes involved in the initiation of human Th1 or Th2 cell commitment. Eur J Immunol 2005; 35: 3307–3319.

    Article  CAS  PubMed  Google Scholar 

  22. Hozumi K, Abe N, Chiba S, Hirai H, Habu S . Active form of Notch members can enforce T lymphopoiesis on lymphoid progenitors in the monolayer culture specific for B cell development. J Immunol 2003; 170: 4973–4979.

    Article  CAS  PubMed  Google Scholar 

  23. Kuppers R, Sousa AB, Baur AS, Strickler JG, Rajewsky K, Hansmann ML . Common germinal-center B-cell origin of the malignant cells in two composite lymphomas, involving classical Hodgkin's disease and either follicular lymphoma or B-CLL. Mol Med 2001; 7: 285–292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marafioti T, Hummel M, Anagnostopoulos I, Foss HD, Huhn D, Stein H . Classical Hodgkin's disease and follicular lymphoma originating from the same germinal center B cell. J Clin Oncol 1999; 17: 3804–3809.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank J Oppatt, E Berg and H Lammert for their excellent technical assistance and Professor Dr Franco Gabrielli for providing the anti-DHRS2 (HEP27) antibody. This work was supported by a grant from the Deutsche Forschungsgemeinschaft, Klinische Forschergruppe 105.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Hummel.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehlers, A., Oker, E., Bentink, S. et al. Histone acetylation and DNA demethylation of B cells result in a Hodgkin-like phenotype. Leukemia 22, 835–841 (2008). https://doi.org/10.1038/leu.2008.12

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.12

Keywords

This article is cited by

Search

Quick links