Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Disorders

Gene expression profiling distinguishes JAK2V617F-negative from JAK2V617F-positive patients in essential thrombocythemia

Abstract

To explore the gene expression signature in essential thrombocythemia (ET) patients in relation to JAK2V617F mutational status, expression profiling in circulating granulocytes was performed. Twenty ET were studied by microarray analysis and the results were confirmed by real-time quantitative RT-PCR in 40 ET patients, not receiving cytoreductive treatment. A heterogeneous molecular signature characterized by two main gene expression patterns was found: one with an upregulation of inflammatory genes related to neutrophil activation and thrombosis, and the other with significantly lower expression of these genes. Supervised clustering analysis showed 30 genes differentially expressed between JAK2V617F-negative and JAK2V617F-positive ET patients. Among the JAK2V617F-negative, a set of 14 genes (CISH, C13orf18, CCL3, PIM1, MAFF, SOCS3, ID2, GADD45B, KLF5, TNF, LAMB3, HRH4, TAGAP and TRIB1) showed an abnormal expression pattern. In this group of patients, CISH, SOCS2, SOCS3 and PIM1 genes, all involved in JAK-STAT signalling pathway, presented a lower expression. A two-gene predictor model was built comprising FOSB and CISH genes, which were the best discriminators of JAK2V617F status. In conclusion, JAK2V617F-negative ET patients present a characteristic gene expression profile, different from JAK2V617F-positive patients. Other pathways, besides JAK-STAT, might be implicated in the pathophysiology of JAK2V617F-negative ET patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Tefferi A, Vardiman JW . Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 2008; 22: 14–22.

    Article  CAS  PubMed  Google Scholar 

  2. Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365: 1054–1061.

    Article  CAS  PubMed  Google Scholar 

  3. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–397.

    Article  CAS  PubMed  Google Scholar 

  4. James C, Ugo V, Le Couedic JP, Staerk J, Delhommeau F, Lacout C et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 2005; 434: 1144–1148.

    Article  CAS  PubMed  Google Scholar 

  5. Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med 2005; 352: 1779–1790.

    Article  CAS  PubMed  Google Scholar 

  6. Campbell PJ, Baxter EJ, Beer PA, Scott LM, Bench AJ, Huntly BJ et al. Mutation of JAK2 in the myeloproliferative disorders: timing, clonality studies, cytogenetic associations, and role in leukemic transformation. Blood 2006; 108: 3548–3555.

    Article  CAS  PubMed  Google Scholar 

  7. Campbell PJ, Scott LM, Buck G, Wheatley K, East CL, Marsden JT et al. Definition of subtypes of essential thrombocythaemia and relation to polycythaemia vera based on JAK2 V617F mutation status: a prospective study. Lancet 2005; 366: 1945–1953.

    Article  CAS  PubMed  Google Scholar 

  8. Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 2007; 356: 459–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Martínez-Avilés L, Besses C, Alvarez-Larrán A, Cervantes F, Hernández-Boluda JC, Bellosillo B . JAK2 exon 12 mutations in polycythemia vera or idiopathic erythrocytosis. Haematologica 2007; 92: 1717–1718.

    Article  PubMed  Google Scholar 

  10. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med 2006; 3: e270.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pellagatti A, Vetrie D, Langford CF, Gama S, Eagleton H, Wainscoat JS et al. Gene expression profiling in polycythemia vera using cDNA microarray technology. Cancer Res 2003; 63: 3940–3944.

    CAS  PubMed  Google Scholar 

  12. Goerttler PS, Kreutz C, Donauer J, Faller D, Maiwald T, Marz E et al. Gene expression profiling in polycythaemia vera: overexpression of transcription factor NF-E2. Br J Haematol 2005; 129: 138–150.

    Article  CAS  PubMed  Google Scholar 

  13. Steidl U, Schroeder T, Steidl C, Kobbe G, Graef T, Bork S et al. Distinct gene expression pattern of malignant hematopoietic stem and progenitor cells in polycythemia vera. Ann NY Acad Sci 2005; 1044: 94–108.

    Article  CAS  PubMed  Google Scholar 

  14. Kralovics R, Teo SS, Buser AS, Brutsche M, Tiedt R, Tichelli A et al. Altered gene expression in myeloproliferative disorders correlates with activation of signaling by the V617F mutation of Jak2. Blood 2005; 106: 3374–3376.

    Article  CAS  PubMed  Google Scholar 

  15. Schwemmers S, Will B, Waller CF, Abdulkarim K, Johansson P, Andreasson B et al. JAK2V617F-negative ET patients do not display constitutively active JAK/STAT signaling. Exp Hematol 2007; 35: 1695–1703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Florensa L, Bellosillo B, Besses C, Puigdecanet E, Espinet B, Perez-Vila E et al. JAK2 V617F mutation analysis in different myeloid lineages (granulocytes, platelets, CFU-MK, BFU-E and CFU-GM) in essential thrombocythemia patients. Leukemia 2006; 20: 1903–1905.

    Article  CAS  PubMed  Google Scholar 

  17. Smyth GK . Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004; 3: Article3.

    Article  PubMed  Google Scholar 

  18. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004; 5: R80.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Al-Shahrour F, Minguez P, Tárraga J, Montaner D, Alloza E, Vaquerizas JMM et al. BABELOMICS: a systems biology perspective in the functional annotation of genome-scale experiments. Nucleic Acids Res 2006; 34: W472–W476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002; 3: RESEARCH0034.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Soukup M, Cho H, Lee JK . Robust classification modeling on microarray data using misclassification penalized posterior. Bioinformatics 2005; 21 (Suppl): i423–i430.

    Article  CAS  PubMed  Google Scholar 

  22. Moll J, Khaldoyanidi S, Sleeman JP, Achtnich M, Preuss I, Ponta H et al. Two different functions for CD44 proteins in human myelopoiesis. J Clin Invest 1998; 102: 1024–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rameshwar P, Chang VT, Gascón P . Implication of CD44 in adhesion-mediated overproduction of TGF-beta and IL-1 in monocytes from patients with bone marrow fibrosis. Br J Haematol 1996; 93: 22–29.

    Article  CAS  PubMed  Google Scholar 

  24. Falanga A, Marchetti M, Vignoli A, Balducci D, Russo L, Guerini V et al. V617F JAK-2 mutation in patients with essential thrombocythemia: relation to platelet, granulocyte, and plasma hemostatic and inflammatory molecules. Exp Hematol 2007; 35: 702–711.

    Article  CAS  PubMed  Google Scholar 

  25. Arellano-Rodrigo E, Alvarez-Larran A, Reverter JC, Villamor N, Colomer D, Cervantes F . Increased platelet and leukocyte activation as contributing mechanisms for thrombosis in essential thrombocythemia and correlation with the JAK2 mutational status. Haematologica 2006; 91: 169–175.

    CAS  PubMed  Google Scholar 

  26. Smyth GK . Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W (eds). Bioinformatics and Computational Biology Solutions using R and Bioconductor. Springer: New York, 2005, pp 397–420.

    Chapter  Google Scholar 

  27. Ward AC, Touw I, Yoshimura A . The Jak-Stat pathway in normal and perturbed hematopoiesis. Blood 2000; 95: 19–29.

    CAS  PubMed  Google Scholar 

  28. Håkansson P, Nilsson B, Andersson A, Lassen C, Gullberg U, Fioretos T . Gene expression analysis of BCR/ABL1-dependent transcriptional response reveals enrichment for genes involved in negative feedback regulation. Genes Chromosomes Cancer 2008; 47: 267–275.

    Article  PubMed  Google Scholar 

  29. Peltola KJ, Paukku K, Aho TL, Ruuska M, Silvennoinen O, Koskinen PJ . Pim-1 kinase inhibits STAT5-dependent transcription via its interactions with SOCS1 and SOCS3. Blood 2004; 103: 3744–3750.

    Article  CAS  PubMed  Google Scholar 

  30. Cooney RN . Suppressors of cytokine signaling (SOCS): inhibitors of the JAK/STAT pathway. Shock 2002; 17: 83–90.

    Article  PubMed  Google Scholar 

  31. Verdier F, Chrétien S, Muller O, Varlet P, Yoshimura A, Gisselbrecht S et al. Proteasomes regulate erythropoietin receptor and signal transducer and activator of transcription 5 (STAT5) activation. Possible involvement of the ubiquitinated Cis protein. J Biol Chem 1998; 273: 28185–28190.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants FIS PI030345 and PI071009 from the Spanish Ministry of Health and Beca de Investigación FEHH. We thank Manuel Delgado, Norma Carmen Gutiérrez and Jesús Ma Hernández-Rivas from Servicio de Hematología, Hospital Universitario de Salamanca and Centro de Investigación del Cáncer (CIC), for their help in microarray data analyses and Josep M Manresa from Assessorament Metodològic en Investigació Biomèdica (AMIB) Department, IMIM-Hospital del Mar, for the statistical analysis of the clinical data.

Authorship contribution: EP processed the samples, carried out the microarray study and real-time quantitative RT-PCR analysis, and wrote the manuscript; BE designed the study and wrote the paper; JJL, LS performed the statistical analysis of the microarray and the real-time quantitative RT-PCR data; BB carried out the JAK2 analysis and provided molecular biology laboratory support; LA provided basic laboratory support; AA and CB collected the patients data; FS performed cytogenetics studies; SS was head of the laboratory that was involved in the biology studies; LF designed the study and wrote the paper. All authors reviewed and accepted the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Florensa.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puigdecanet, E., Espinet, B., Lozano, J. et al. Gene expression profiling distinguishes JAK2V617F-negative from JAK2V617F-positive patients in essential thrombocythemia. Leukemia 22, 1368–1376 (2008). https://doi.org/10.1038/leu.2008.112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.112

Keywords

This article is cited by

Search

Quick links