Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cardiac time intervals derived by magnetocardiography in fetuses exposed to pregnancy hypertension syndromes

Abstract

Objective:

To test the hypothesis that fetuses exposed to maternal preeclampsia or chronic hypertension have deranged development of cardiac time intervals.

Study Design:

Pregnancies were divided into three groups: Intrauterine Growth Restricted (IUGR), Hypertensive, and Normal. Each group’s mean fetal cardiac time intervals (P, PR, QRS and RR) derived by magnetocardiography were calculated using an analysis of covariance model’s regression-adjusted estimates for a gestational age of 35 weeks.

Results:

We reviewed 141 recordings from 21 IUGR, 46 Hypertensive and 74 Normal patients. The IUGR, Hypertensive and Normal groups, respectively, had adjusted mean intervals in milliseconds of 66.4, 66.8 and 76.2 for P (P=0.001), 95.9, 101.6 and 109.6 for PR (P=0.002), 77.2, 78.7 and 78.7 for QRS (P=0.81) and 429.8, 429.2 and 428.5 for RR (P=0.97).

Conclusion:

P and PR intervals are abbreviated in normotrophic fetuses exposed to maternal hypertension, suggesting shortened atrioventricular conduction times.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. American College of Obstetricians and Gynecologists, Task Force on Hypertension in Pregnancy. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists' Task Force on Hypertension in Pregnancy. Obstet Gynecol 2013; 122 (5): 1122–1131.

    Article  Google Scholar 

  2. American College of Obstetrician and Gynecologists. ACOG Practice bulletin no. 134: fetal growth restriction. Obstet Gynecol 2013; 121 (5): 1122–1133.

    Article  Google Scholar 

  3. Alanis MC, Robinson CJ, Hulsey TC, Ebeling M, Johnson DD . Early-onset severe preeclampsia: induction of labor vs elective cesarean delivery and neonatal outcomes. Am J Obstet Gynecol 2008; 199 (3): 262, e261–266.

    Article  Google Scholar 

  4. Bombrys AE, Barton JR, Nowacki EA, Habli M, Pinder L, How H et al. Expectant management of severe preeclampsia at less than 27 weeks' gestation: maternal and perinatal outcomes according to gestational age by weeks at onset of expectant management. Am J Obstet Gynecol 2008; 199 (3): 247, e241–246.

    Article  Google Scholar 

  5. Danielson L, McMillen IC, Dyer JL, Morrison JL . Restriction of placental growth results in greater hypotensive response to alpha-adrenergic blockade in fetal sheep during late gestation. J Physiol 2005; 563 (Pt 2): 611–620.

    Article  CAS  Google Scholar 

  6. Pardi G, Marconi A, Ferrazzi E . The intraventricular conduction time of fetal heart in pregnancies with suspected fetal growth retardation. Br J Obstet Gynaecol 1986; 93 (3): 250–254.

    Article  CAS  Google Scholar 

  7. Akil A, Api O, Oten Can E, Ozkan S, Ercan S, Orcun A et al. Does preeclampsia have any adverse effect on fetal heart? J Matern Fetal Neonatal Med 2015; 1–4.

  8. Api O, Emeksiz MB, Api M, Ugurel V, Unal O . Modified myocardial performance index for evaluation of fetal cardiac function in pre-eclampsia. Ultrasound Obstet Gynecol 2009; 33 (1): 51–57.

    Article  CAS  Google Scholar 

  9. Quinn A, Weir A, Shahani U, Bain R, Maas P, Donaldson G . Antenatal fetal magnetocardiography: a new method for fetal surveillance? Br J Obstet Gynaecol 1994; 101 (10): 866–870.

    Article  CAS  Google Scholar 

  10. Stinstra J, Golbach E, van Leeuwen P, Lange S, Menendez T, Moshage W et al. Multicentre study of fetal cardiac time intervals using magnetocardiography. BJOG 2002; 109 (11): 1235–1243.

    Article  CAS  Google Scholar 

  11. Eswaran H, Preissl H, Wilson JD, Murphy P, Robinson SE, Lowery CL . First magnetomyographic recordings of uterine activity with spatial-temporal information with a 151-channel sensor array. Am J Obstet Gynecol 2002; 187 (1): 145–151.

    Article  Google Scholar 

  12. Donofrio MT, Moon-Grady AJ, Hornberger LK, Copel JA, Sklansky MS, Abuhamad A et al. Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation 2014; 129 (21): 2183–2242.

    Article  Google Scholar 

  13. Bolnick AD, Borgida AF, Egan JF, Zelop CM . Influence of gestational age and fetal heart rate on the fetal mechanical PR interval. J Matern Fetal Neonatal Med 2004; 15 (5): 303–305.

    Article  CAS  Google Scholar 

  14. Luzietti R, Erkkola R, Hasbargen U, Mattson LA, Thoulon JM, Rosen KG . European Community Multicentre Trial "Fetal ECG Analysis During Labour": the P-R interval. J Perinat Med 1997; 25 (1): 27–34.

    Article  CAS  Google Scholar 

  15. Nii M, Hamilton RM, Fenwick L, Kingdom JC, Roman KS, Jaeggi ET . Assessment of fetal atrioventricular time intervals by tissue Doppler and pulse Doppler echocardiography: normal values and correlation with fetal electrocardiography. Heart 2006; 92 (12): 1831–1837.

    Article  CAS  Google Scholar 

  16. Wakai RT, Strasburger JF, Li Z, Deal BJ, Gotteiner NL . Magnetocardiographic rhythm patterns at initiation and termination of fetal supraventricular tachycardia. Circulation 2003; 107 (2): 307–312.

    Article  CAS  Google Scholar 

  17. Horigome H, Takahashi MI, Asaka M, Shigemitsu S, Kandori A, Tsukada K . Magnetocardiographic determination of the developmental changes in PQ, QRS and QT intervals in the foetus. Acta Paediatr 2000; 89 (1): 64–67.

    Article  CAS  Google Scholar 

  18. Kahler C, Schleussner E, Grimm B, Schneider A, Schneider U, Nowak H et al. Fetal magnetocardiography: development of the fetal cardiac time intervals. Prenat Diagn 2002; 22 (5): 408–414.

    Article  Google Scholar 

  19. Kato Y, Takahashi-Igari M, Inaba T, Sumazaki R, Horigome H . Comparison of PR intervals determined by fetal magnetocardiography and pulsed Doppler echocardiography. Fetal Diagn Ther 2012; 32 (1-2): 109–115.

    Article  Google Scholar 

  20. Leuthold A, Wakai RT, Martin CB . Noninvasive in utero assessment of PR and QRS intervals from the fetal magnetocardiogram. Early Hum Dev 1999; 54 (3): 235–243.

    Article  CAS  Google Scholar 

  21. Lowery CL, Campbell JQ, Wilson JD, Murphy P, Preissl H, Malak SF et al. Noninvasive antepartum recording of fetal S-T segment with a newly developed 151-channel magnetic sensor system. Am J Obstet Gynecol 2003; 188 (6): 1491–1496 (discussion 1496–1497).

    Article  Google Scholar 

  22. Mensah-Brown NA, Wakai RT, Cheulkar B, Srinivasan S, Strasburger JF . Assessment of left ventricular pre-ejection period in the fetus using simultaneous magnetocardiography and echocardiography. Fetal Diagn Ther 2010; 28 (3): 167–174.

    Article  Google Scholar 

  23. Van Leeuwen P, Lange S, Klein A, Geue D, Gronemeyer DH . Dependency of magnetocardiographically determined fetal cardiac time intervals on gestational age, gender and postnatal biometrics in healthy pregnancies. BMC Pregnancy Childbirth 2004; 4 (1): 6.

    Article  Google Scholar 

  24. van Leeuwen P, Lange S, Klein A, Geue D, Zhang Y, Krause HJ et al. Reproducibility and reliability of fetal cardiac time intervals using magnetocardiography. Physiol Meas 2004; 25 (2): 539–552.

    Article  CAS  Google Scholar 

  25. Grimm B, Kaehler C, Schleussner E, Schneider U, Haueisen J, Seewald HJ . Influence of intrauterine growth restriction on cardiac time intervals evaluated by fetal magnetocardiography. Early Hum Dev 2003; 74 (1): 1–11.

    Article  Google Scholar 

  26. Rijnbeek PR, Witsenburg M, Schrama E, Hess J, Kors JA . New normal limits for the paediatric electrocardiogram. Eur Heart J 2001; 22 (8): 702–711.

    Article  CAS  Google Scholar 

  27. van Leeuwen P, Schiermeier S, Lange S, Klein A, Geue D, Hatzmann W et al. Gender-related changes in magnetocardiographically determined fetal cardiac time intervals in intrauterine growth retardation. Pediatr Res 2006; 59 (6): 820–824.

    Article  Google Scholar 

  28. Grimm B, Haueisen J, Huotilainen M, Lange S, Van Leeuwen P, Menendez T et al. Recommended standards for fetal magnetocardiography. Pacing Clin Electrophysiol 2003; 26 (11): 2121–2126.

    Article  Google Scholar 

  29. Pijnenborg R, Anthony J, Davey DA, Rees A, Tiltman A, Vercruysse L et al. Placental bed spiral arteries in the hypertensive disorders of pregnancy. Br J Obstet Gynaecol 1991; 98 (7): 648–655.

    Article  CAS  Google Scholar 

  30. Sibai BM, Lindheimer M, Hauth J, Caritis S, VanDorsten P, Klebanoff M et al. Risk factors for preeclampsia, abruptio placentae, and adverse neonatal outcomes among women with chronic hypertension. National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. N Engl J Med 1998; 339 (10): 667–671.

    Article  CAS  Google Scholar 

  31. Urban G, Vergani P, Ghidini A, Tortoli P, Ricci S, Patrizio P et al. State of the art: non-invasive ultrasound assessment of the uteroplacental circulation. Semin Perinatol 2007; 31 (4): 232–239.

    Article  Google Scholar 

  32. Ong SS, Moore RJ, Warren AY, Crocker IP, Fulford J, Tyler DJ et al. Myometrial and placental artery reactivity alone cannot explain reduced placental perfusion in pre-eclampsia and intrauterine growth restriction. BJOG 2003; 110 (10): 909–915.

    Article  Google Scholar 

  33. Everett TR, Mahendru AA, McEniery CM, Wilkinson IB, Lees CC . Raised uterine artery impedance is associated with increased maternal arterial stiffness in the late second trimester. Placenta 2012; 33 (7): 572–577.

    Article  CAS  Google Scholar 

  34. Comas M, Crispi F, Cruz-Martinez R, Martinez JM, Figueras F, Gratacos E . Usefulness of myocardial tissue Doppler vs conventional echocardiography in the evaluation of cardiac dysfunction in early-onset intrauterine growth restriction. Am J Obstet Gynecol 2010; 203 (1): 45, e41–47.

    Article  Google Scholar 

  35. Crispi F, Hernandez-Andrade E, Pelsers MM, Plasencia W, Benavides-Serralde JA, Eixarch E et al. Cardiac dysfunction and cell damage across clinical stages of severity in growth-restricted fetuses. Am J Obstet Gynecol 2008; 199 (3): 254, e251–258.

    Article  Google Scholar 

  36. Chaiworapongsa T, Espinoza J, Yoshimatsu J, Kalache K, Edwin S, Blackwell S et al. Subclinical myocardial injury in small-for-gestational-age neonates. J Matern Fetal Neonatal Med 2002; 11 (6): 385–390.

    Article  CAS  Google Scholar 

  37. Crispi F, Bijnens B, Sepulveda-Swatson E, Cruz-Lemini M, Rojas-Benavente J, Gonzalez-Tendero A et al. Postsystolic shortening by myocardial deformation imaging as a sign of cardiac adaptation to pressure overload in fetal growth restriction. Circ Cardiovasc Imaging 2014; 7 (5): 781–787.

    Article  Google Scholar 

  38. Crispi F, Bijnens B, Figueras F, Bartrons J, Eixarch E, Le Noble F et al. Fetal growth restriction results in remodeled and less efficient hearts in children. Circulation 2010; 121 (22): 2427–2436.

    Article  Google Scholar 

  39. Rueda-Clausen CF, Morton JS, Lopaschuk GD, Davidge ST . Long-term effects of intrauterine growth restriction on cardiac metabolism and susceptibility to ischaemia/reperfusion. Cardiovasc Res 2011; 90 (2): 285–294.

    Article  CAS  Google Scholar 

  40. Balli S, Pac FA, Ece I, Oflaz MB, Kibar AE, Kandemir O . Assessment of cardiac functions in fetuses of gestational diabetic mothers. Pediatr Cardiol 2014; 35 (1): 30–37.

    Article  Google Scholar 

  41. Gilbert RD . Fetal myocardial responses to long-term hypoxemia. Comp Biochem Physiol A Mol Integr Physiol 1998; 119 (3): 669–674.

    Article  CAS  Google Scholar 

  42. Khong TY, De Wolf F, Robertson WB, Brosens I . Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. Br J Obstet Gynaecol 1986; 93 (10): 1049–1059.

    Article  CAS  Google Scholar 

  43. Aardema MW, Oosterhof H, Timmer A, van Rooy I, Aarnoudse JG . Uterine artery Doppler flow and uteroplacental vascular pathology in normal pregnancies and pregnancies complicated by pre-eclampsia and small for gestational age fetuses. Placenta 2001; 22 (5): 405–411.

    Article  CAS  Google Scholar 

  44. Spear JF, Moore EN . Influence of brief vagal and stellate nerve stimulation on pacemaker activity and conduction within the atrioventricular conduction system of the dog. Circ Res 1973; 32 (1): 27–41.

    Article  CAS  Google Scholar 

  45. Loeb JM, deTarnowsky JM . Integration of heart rate and sympathetic neural effects on AV conduction. Am J Physiol 1988; 254 (4 Pt 2): H651–H657.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Pamela Murphy, RNP, for her role in performance of MCG and data collection and Dr RB Govindan for developing software to extract and calculate cardiac time intervals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E H Bolin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolin, E., Siegel, E., Eswaran, H. et al. Cardiac time intervals derived by magnetocardiography in fetuses exposed to pregnancy hypertension syndromes. J Perinatol 36, 643–648 (2016). https://doi.org/10.1038/jp.2016.58

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2016.58

This article is cited by

Search

Quick links