Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Right ventricular performance using myocardial deformation imaging in infants with bronchopulmonary dysplasia

Abstract

Objective:

Right ventricular (RV) performance among infants with bronchopulmonary dysplasia (BPD) remains poorly understood. We tested the hypothesis that myocardial deformation imaging (MDI) strain and strain rate would allow for differentiation between infants with severe and milder forms of BPD, independent of tissue Doppler imaging (TDI) and superior to conventional echocardiographic measurements.

Study Design:

Infants with various severities of BPD (11 with none or mild, 13 with moderate and 10 with severe) underwent conventional echocardiography, TDI and MDI assessments at >36 weeks of corrected gestational age. BPD severity grading was determined according to the National Institutes of Child Health and Disease workshop rating scale by physicians blinded to the echocardiogram results. Group data were compared with one-way analysis of variance or Kruskal–Wallis tests, with post hoc multiple comparisons.

Results:

No differences in traditional echocardiographic parameters or TDI among the three BPD severity groups were observed; none of the infants had evidence of pulmonary hypertension. Using MDI, infants with severe BPD had lower peak global systolic strain than did infants with moderate BPD (P<0.01) or mild/none BPD (P<0.01). Early and late diastolic strain rate measurements were similar across the three groups.

Conclusions:

Among infants with severe forms of BPD, evidence of abnormal RV systolic function was detected with MDI, but not traditional echocardiographic or TDI measurements. Infants with severe forms of BPD may represent a particularly high-risk subgroup for decreased RV performance warranting cardiac surveillance. MDI should be considered as a method to quantitate RV function in this population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Bancalari E, Claure N . Definitions and diagnostic criteria for bronchopulmonary dysplasia. Semin Perinatol 2006; 30 (4): 164–170.

    Article  PubMed  Google Scholar 

  2. Walsh MC, Szefler S, Davis J, Allen M, Van Marter L, Abman S et al. Summary proceedings from the bronchopulmonary dysplasia group. Pediatrics 2006; 117 (3 Pt 2): S52–S56.

    Article  PubMed  Google Scholar 

  3. Balany J, Bhandari V . Understanding the impact of infection, inflammation, and their persistence in the pathogenesis of bronchopulmonary dysplasia. Front Med 2015; 2: 90.

    Article  Google Scholar 

  4. Sehgal A, Malikiwi A, Paul E, Tan K, Menahem S . Right ventricular function in infants with bronchopulmonary dysplasia: association with respiratory sequelae. Neonatology 2016; 109 (4): 289–296.

    Article  PubMed  Google Scholar 

  5. Hislop AA, Haworth SG . Pulmonary vascular damage and the development of cor pulmonale following hyaline membrane disease. Pediatric Pulmonology 1990; 9 (3): 152–161.

    Article  CAS  PubMed  Google Scholar 

  6. Bleeker GB, Steendijk P, Holman ER, Yu CM, Breithardt OA, Kaandorp TA et al. Assessing right ventricular function: the role of echocardiography and complementary technologies. Heart 2006; 92 (Suppl 1): i19–i26.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yates AR, Welty SE, Gest AL, Cua CL . Myocardial tissue Doppler changes in patients with bronchopulmonary dysplasia. J Pediatr 2008; 152 (6): 766–770, 770.e1.

    Article  PubMed  Google Scholar 

  8. Mertens LL, Friedberg MK . Imaging the right ventricle—current state of the art. Nat Rev Cardiol 2010; 7 (10): 551–563.

    Article  PubMed  Google Scholar 

  9. Backes CH, Cua C, Kreutzer J, Armsby L, El-Said H, Moore JW et al. Low weight as an independent risk factor for adverse events during cardiac catheterization of infants. Catheter Cardiovasc Interv 2013; 82 (5): 786–794.

    Article  PubMed  Google Scholar 

  10. Nestaas E, Stoylen A, Brunvand L, Fugelseth D . Tissue Doppler derived longitudinal strain and strain rate during the first 3 days of life in healthy term neonates. Pediatr Res 2009; 65 (3): 357–362.

    Article  PubMed  Google Scholar 

  11. Sanchez AA, Levy PT, Sekarski TJ, Hamvas A, Holland MR, Singh GK . Effects of frame rate on two-dimensional speckle tracking-derived measurements of myocardial deformation in premature infants. Echocardiography 2015; 32 (5): 839–847.

    Article  PubMed  Google Scholar 

  12. Parthiban A, Shirali G . Advanced functional echocardiographic imaging of the failing heart in children. Cardiol Young 2015; 25 (Suppl 2): 94–99.

    Article  PubMed  Google Scholar 

  13. Dandel M, Lehmkuhl H, Knosalla C, Suramelashvili N, Hetzer R . Strain and strain rate imaging by echocardiography - basic concepts and clinical applicability. Curr Cardiol Rev 2009; 5 (2): 133–148.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Levy PT, Holland MR, Sekarski TJ, Hamvas A, Singh GK . Feasibility and reproducibility of systolic right ventricular strain measurement by speckle-tracking echocardiography in premature infants. J Am Soc Echocardiogr 2013; 26 (10): 1201–1213.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kalogeropoulos AP, Georgiopoulou VV, Howell S, Pernetz MA, Fisher MR, Lerakis S et al. Evaluation of right intraventricular dyssynchrony by two-dimensional strain echocardiography in patients with pulmonary arterial hypertension. J Am Soc Echocardiogr 2008; 21 (9): 1028–1034.

    Article  PubMed  Google Scholar 

  16. Klitsie LM, Roest AA, Haak MC, Blom NA, Ten Harkel AD . Longitudinal follow-up of ventricular performance in healthy neonates. Early Hum Dev 2013; 89 (12): 993–997.

    Article  PubMed  Google Scholar 

  17. Kahr PC, Kahr MK, Dabral H, Agarwal R, Kothari SS, Saxena A et al. Changes in myocardial contractility and electromechanical interval during the first month of life in healthy neonates. Pediatr Cardiol 2016; 37 (2): 409–418.

    Article  PubMed  Google Scholar 

  18. Ehrenkranz RA, Walsh MC, Vohr BR, Jobe AH, Wright LL, Fanaroff AA et al. Validation of the National Institutes of Health consensus definition of bronchopulmonary dysplasia. Pediatrics 2005; 116 (6): 1353–1360.

    Article  PubMed  Google Scholar 

  19. Levy PT, Dioneda B, Holland MR, Sekarski TJ, Lee CK, Mathur A et al. Right ventricular function in preterm and term neonates: reference values for right ventricle areas and fractional area of change. J Am Soc Echocardiogr 2015; 28 (5): 559–569.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Helfer S, Schmitz L, Buhrer C, Czernik C . Tissue Doppler-derived strain and strain rate during the first 28 days of life in very low birth weight infants. Echocardiography 2014; 31 (6): 765–772.

    Article  PubMed  Google Scholar 

  21. Jain A, Mohamed A, El-Khuffash A, Connelly KA, Dallaire F, Jankov RP et al. A comprehensive echocardiographic protocol for assessing neonatal right ventricular dimensions and function in the transitional period: normative data and z scores. J Am Soc Echocardiogr 2014; 27 (12): 1293–1304.

    Article  PubMed  Google Scholar 

  22. King ME, Braun H, Goldblatt A, Liberthson R, Weyman AE . Interventricular septal configuration as a predictor of right ventricular systolic hypertension in children: a cross-sectional echocardiographic study. Circulation 1983; 68 (1): 68–75.

    Article  CAS  PubMed  Google Scholar 

  23. Mourani PM, Sontag MK, Younoszai A, Ivy DD, Abman SH . Clinical utility of echocardiography for the diagnosis and management of pulmonary vascular disease in young children with chronic lung disease. Pediatrics 2008; 121 (2): 317–325.

    Article  PubMed  Google Scholar 

  24. Galie N, Humbert M, Vachiery JL, Gibbs S, Lang I, Torbicki A et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). European Heart J 2016; 37 (1): 67–119.

    Article  Google Scholar 

  25. Lopez L, Colan SD, Frommelt PC, Ensing GJ, Kendall K, Younoszai AK et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr 2010; 23 (5): 465–495, quiz 576-577.

    Article  PubMed  Google Scholar 

  26. Harada K, Tamura M, Toyono M, Yasuoka K . Comparison of the right ventricular Tei index by tissue Doppler imaging to that obtained by pulsed Doppler in children without heart disease. Am J Cardiol 2002; 90 (5): 566–569.

    Article  PubMed  Google Scholar 

  27. Waggoner AD, Bierig SM . Tissue Doppler imaging: a useful echocardiographic method for the cardiac sonographer to assess systolic and diastolic ventricular function. J Am Soc Echocardiogr 2001; 14 (12): 1143–1152.

    Article  CAS  PubMed  Google Scholar 

  28. Shekerdemian L, Bohn D . Cardiovascular effects of mechanical ventilation. Arch Dis Childh 1999; 80 (5): 475–480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Breatnach CR, Levy PT, James AT, Franklin O, El-Khuffash A . Novel echocardiography methods in the functional assessment of the newborn heart. Neonatology 2016; 110 (4): 248–260.

    Article  PubMed  Google Scholar 

  30. Pena JL, da Silva MG, Faria SC, Salemi VM, Mady C, Baltabaeva A et al. Quantification of regional left and right ventricular deformation indices in healthy neonates by using strain rate and strain imaging. J Am Soc Echocardiogr 2009; 22 (4): 369–375.

    Article  PubMed  Google Scholar 

  31. El-Khuffash AF, Jain A, Dragulescu A, McNamara PJ, Mertens L . Acute changes in myocardial systolic function in preterm infants undergoing patent ductus arteriosus ligation: a tissue Doppler and myocardial deformation study. J Am Soc Echocardiogr 2012; 25 (10): 1058–1067.

    Article  PubMed  Google Scholar 

  32. Mertens L, Ganame J, Claus P, Goemans N, Thijs D, Eyskens B et al. Early regional myocardial dysfunction in young patients with Duchenne muscular dystrophy. J Am Soc Echocardiogr 2008; 21 (9): 1049–1054.

    Article  PubMed  Google Scholar 

  33. Hughes ML, Shekerdemian LS, Brizard CP, Penny DJ . Improved early ventricular performance with a right ventricle to pulmonary artery conduit in stage 1 palliation for hypoplastic left heart syndrome: evidence from strain Doppler echocardiography. Heart 2004; 90 (2): 191–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Menon SC, Minich LL, Casper TC, Puchalski MD, Hawkins JA, Tani LY . Regional myocardial dysfunction following Norwood with right ventricle to pulmonary artery conduit in patients with hypoplastic left heart syndrome. J Am Soc Echocardiogr 2011; 24 (8): 826–833.

    Article  PubMed  Google Scholar 

  35. Ganame J, Claus P, Uyttebroeck A, Renard M, D'Hooge J, Bijnens B et al. Myocardial dysfunction late after low-dose anthracycline treatment in asymptomatic pediatric patients. J Am Soc Echocardiogr 2007; 20 (12): 1351–1358.

    Article  PubMed  Google Scholar 

  36. Nestaas E, Stoylen A, Brunvand L, Fugelseth D . Longitudinal strain and strain rate by tissue Doppler are more sensitive indices than fractional shortening for assessing the reduced myocardial function in asphyxiated neonates. Cardiol Young 2011; 21 (1): 1–7.

    Article  PubMed  Google Scholar 

  37. Negishi K, Negishi T, Agler DA, Plana JC, Marwick TH . Role of temporal resolution in selection of the appropriate strain technique for evaluation of subclinical myocardial dysfunction. Echocardiography 2012; 29 (3): 334–339.

    Article  PubMed  Google Scholar 

  38. Patel N, Mills JF, Cheung MM . Assessment of right ventricular function using tissue Doppler imaging in infants with pulmonary hypertension. Neonatology 2009; 96 (3): 193–199, discussion 200-202.

    Article  PubMed  Google Scholar 

  39. Joshi S, Edwards JM, Wilson DG, Wong JK, Kotecha S, Fraser AG . Reproducibility of myocardial velocity and deformation imaging in term and preterm infants. Eur J Echocardiogr 2010; 11 (1): 44–50.

    Article  PubMed  Google Scholar 

  40. Pauliks L . Tissue doppler myocardial velocity imaging in infants and children—a window into developmental changes of myocardial mechanics. Echocardiography 2013; 30 (4): 439–446.

    Article  PubMed  Google Scholar 

  41. Negrine RJ, Chikermane A, Wright JG, Ewer AK . Assessment of myocardial function in neonates using tissue Doppler imaging. Arch Dis Child Fetal Neonatal Ed 2012; 97 (4): F304–F306.

    Article  CAS  PubMed  Google Scholar 

  42. Alp H, Karaarslan S, Baysal T, Cimen D, Ors R, Oran B . Normal values of left and right ventricular function measured by M-mode, pulsed doppler and Doppler tissue imaging in healthy term neonates during a 1-year period. Early Hum Dev 2012; 88 (11): 853–859.

    Article  PubMed  Google Scholar 

  43. Saleemi MS, Bruton K, El-Khuffash A, Kirkham C, Franklin O, Corcoran JD . Myocardial assessment using tissue doppler imaging in preterm very low-birth weight infants before and after red blood cell transfusion. J Perinatol 2013; 33 (9): 681–686.

    Article  CAS  PubMed  Google Scholar 

  44. Yajamanyam PK, Negrine RJ, Rasiah SV, Zamora J, Ewer AK . Assessment of myocardial function in preterm infants with chronic lung disease using tissue Doppler imaging. Arch Dis Child Fetal Neonatal Ed 2016 (e-pub ahead of print).

  45. Poon CY, Edwards JM, Joshi S, Kotecha S, Fraser AG . Optimization of myocardial deformation imaging in term and preterm infants. Eur J Echocardiogr 2011; 12 (3): 247–254.

    PubMed  Google Scholar 

  46. James AT, Corcoran JD, Breatnach CR, Franklin O, Mertens L, El-Khuffash A . Longitudinal assessment of left and right myocardial function in preterm infants using strain and strain rate imaging. Neonatology 2016; 109 (1): 69–75.

    Article  CAS  PubMed  Google Scholar 

  47. Gentles TL . The right ventricle and persistent pulmonary hypertension of the newborn. Commentary on Patel N et al.: assessment of right ventricular function using tissue Doppler imaging in infants with pulmonary hypertension (Neonatology 2009;96:193-199). Neonatology 2009; 96 (3): 200–202.

    Article  PubMed  Google Scholar 

  48. Franchi F, Faltoni A, Cameli M, Muzzi L, Lisi M, Cubattoli L et al. Influence of positive end-expiratory pressure on myocardial strain assessed by speckle tracking echocardiography in mechanically ventilated patients. Biomed Res Int 2013; 2013: 918548.

    Article  PubMed  PubMed Central  Google Scholar 

  49. de Waal K, Phad N, Lakkundi A, Tan P . Cardiac function after the immediate transitional period in very preterm infants using speckle tracking analysis. Pediatric Cardiology 2016; 37 (2): 295–303.

    Article  PubMed  Google Scholar 

  50. Burns AT, La Gerche A, D'Hooge J, MacIsaac AI, Prior DL . Left ventricular strain and strain rate: characterization of the effect of load in human subjects. Eur J Echocardiogr 2010; 11 (3): 283–289.

    Article  PubMed  Google Scholar 

  51. Baker CD, Abman SH, Mourani PM . Pulmonary hypertension in preterm infants with bronchopulmonary dysplasia. Pediatr Allergy Immunol Pulmonol 2014; 27 (1): 8–16.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Slaughter JL, Pakrashi T, Jones DE, South AP, Shah TA . Echocardiographic detection of pulmonary hypertension in extremely low birth weight infants wit hbronchopulmonary dysplasia requiring prolonged positive pressure ventilation. J Perinatol 2011; 31 (10): 635–640.

    Article  CAS  PubMed  Google Scholar 

  53. Mourani PM, Abman SH . Pulmonary hypertension and vascular abnormalities in bronchopulmonary dysplasia. Clin Perinatol 2015; 42 (4): 839–855.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shepherd EG, Knupp AM, Welty SE, Susey KM, Gardner WP, Gest AL . An interdisciplinary bronchopulmonary dysplasia program is associated with improved neurodevelopmental outcomes and fewer rehospitalizations. J Perinatol 2012; 32 (1): 33–38.

    Article  CAS  PubMed  Google Scholar 

  55. Singh GK, Levy PT, Holland MR, Hamvas A . Novel methods for assessment of right heart structure and function in pulmonary hypertension. Clin Perinatol 2012; 39 (3): 685–701.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

These studies were supported by the American Heart Association Grant 10CRP3730033 (to CHB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C H Backes.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haque, U., Stiver, C., Rivera, B. et al. Right ventricular performance using myocardial deformation imaging in infants with bronchopulmonary dysplasia. J Perinatol 37, 81–87 (2017). https://doi.org/10.1038/jp.2016.173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2016.173

This article is cited by

Search

Quick links