Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cord blood telomere length in Latino infants: relation with maternal education and infant sex

Abstract

Objective:

Telomere length (TL) has important consequences for early disease and lifelong health. However, few studies have examined determinants of TL at birth.

Study Design:

Here we test associations between cord blood TL and parental and birth factors associated with exposure to stress and indicative of healthy intrauterine life in Latino infants. We tested associations that were significant in bivariate analysis in a multivariate regression model to identify independent predictors for shorter TL at birth.

Result:

Two novel and independent predictors emerged in our analysis of 54 infants. Female gender was associated with longer TL by ~350 base pairs (adjusted β-coefficient for male gender=−369.57, (95% confidence interval, −718.21 to (−)20.92), P=0.02); rho=−0.26, P=0.057). Increased maternal high-school education, as indicated by a high-school diploma or additional education beyond high school, was also associated with longer TL, by ~500 base pairs (adjusted β-coefficient for high-school diploma or greater=505.68 (95% confidence interval, 151.69 to 859.68), P<0.01); rho=0.36, P<0.01). Increasing head circumference trended towards statistical significance in association with longer TL (adjusted β-coefficient = 7.33; 95% confidence interval −0.52 to 15.18; P=0.07). When we removed all infants who had been exposed to high oxidative stress in pregnancy including those exposed to maternal hypertension, preeclampsia, gestational diabetes, and those who were low birth weight or preterm birth (n=7), increasing birth weight percentile was associated with longer TL (adjusted β-coefficient=8.04 (95% confidence interval 0.07 to 16.00), P=0.048).

Conclusion:

Shorter TL at birth is associated with being male, low maternal education (less than a high school degree), and a trend towards lower birth weight and head circumference. Given the critical role of long TL in predicting health and disease, these findings contribute to the growing literature attempting to understand determinants of TL.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Blackburn EH . Telomeres: structure and synthesis. J Biol Chem 1990; 265: 5919–5921.

    CAS  PubMed  Google Scholar 

  2. Rufer N, Brummendorf TH, Kolvraa S, Bischof C, Christensen K, Wadsworth L et al. Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J Exp Med 1999; 190 (2): 157–167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Frenck RW, Blackburn EH, Shannon KM . The rate of telomere sequence loss in human leukocytes varies with age. Proc Natl Acad Sci USA 1998; 95 (10): 5607–5610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saliques S, Teyssier JR, Vergely C, Lorgis L, Lorin J, Farnier M et al. Circulating leukocyte telomere length and oxidative stress: a new target for statin therapy. Atherosclerosis 2011; 219 (2): 753–760.

    Article  CAS  PubMed  Google Scholar 

  5. Aviv A, Valdes AM, Spector TD . Human telomere biology: pitfalls of moving from the laboratory to epidemiology. Int J Epidemiol 2006; 35: 1424–1429.

    Article  PubMed  Google Scholar 

  6. Henrichs J, Schenk JJ, Roza SJ, van den Berg MP, Schmidt HG, Steeger EA et al. Maternal psychological distress and fetal growth trajectories: the Generation R Study. Psychol Med 2012; 40: 633–643.

    Article  Google Scholar 

  7. Okuda K, Bardeguez A, Gardner JP, Rodriguez P, Ganesh V, Kimura M et al. Telomere length in the newborn. Pediatr Res 2002; 52: 377–381.

    Article  PubMed  Google Scholar 

  8. Xu J, Ye J, Wu Y, Zhang H, Luo Q, Han C et al. Reduced fetal telomere length in gestational diabetes. PLoS One 2014; 9 (1): e86161.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Drury SS, Esteves K, Hatch V, Woodbury M, Borne S, Adamski A et al. Setting the trajectory: racial disparities in newborn telomere length. J Pediatr 2015; 166: 1181–1186.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Broer L, Codd V, Nyholt DR, Deelen J, Mangino M, Willemsen G et al. Meta-analysis of telomere length in 19,713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur J Hum Genet 2013; 21 (10): 1163–1168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Iman T, Jitratkosol MH, Soudeyns H, Sattha B, Gadawaki I, Maan E et al. Leukocyte telomere length in HIV-infected pregnant women treated with antiretroviral drugs during pregnancy and their uninfected infants. J Acquir Immune Defic Syndr 2012; 60: 495–502.

    Article  Google Scholar 

  12. Entringer S, Epel ES, Lin J, Buss C, Shahbaba B, Blackburn EH et al. Maternal psychosocial stress during pregnancy is associated with newborn leukocyte telomere length. Am J Obstetr Gynecol 2013; 208 (2): 134. e1–7.

    Article  Google Scholar 

  13. Salihu HM, Pradhan A, King L, Paothong A, Nwoga C, Marty PJ et al. Impact of intrauterine tobacco exposure on fetal telomere length. Am J Obstet Gynecol 2015; 212 (2): 205. E1–E8.

    Article  Google Scholar 

  14. Entringer S, Epel ES, Lin J, Blackburn EH, Buss C, Shahbaba B et al. Maternal folate concentration in early pregnancy and newborn telomere length. Ann Nutr Metab 2015; 66 (4): 202–208.

    Article  CAS  PubMed  Google Scholar 

  15. Menon R, Yu J, Basanta-Henry P, Brou L, Berga SL, Fortunato SJ et al. Short fetal leukocyte telomere length and preterm prelabor rupture of the membranes. PLoS One 2012; 7 (2): e31136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Akkad A, Hastings R, Konje JC, Bell SC, Thurston H, Williams B . Telomere length in small-for-gestational-age babies. BJOG 2006; 113: 318–323.

    Article  CAS  PubMed  Google Scholar 

  17. Tellechea M, Gianotti TF, Alvariñas J, González CD, Sookoian S, Pirola CJ . Telomere length in the two extremes of abnormal fetal growth and the programming effect of maternal arterial hypertension. Sci Rep 2015; 5: 7869.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Heiss G, Snyder ML, Teng Y, Schneiderman N, LLabre MM, Cowie C et al. Diabetes Care 2014; 37 (8): 2391–2399.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Radloff LS . The CES-D scale: a self-report depression scale for research in the general population. Appl Psychol Meas 1977; 1: 385–401.

    Article  Google Scholar 

  20. Cox JL, Holden JM, Sagovsky R . Detection of postnatal depression. Development of the 10-item Edinburgh Postnatal Depression Scale. Br J Psychiatry 1987; 150: 782–786.

    Article  CAS  PubMed  Google Scholar 

  21. Sheehan DV, Lecruiber Y, Sheehan KH, Amorim P, Janavas J, Weiller E et al. The mini-international neuropsychiatric interview (M.I.N.I): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 1998; 59: 22–33.

    PubMed  Google Scholar 

  22. Cawthon RM . Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res 2009; 37 (3): e21.

    Article  PubMed  PubMed Central  Google Scholar 

  23. American College of Obstetricians and Gynecologists (ACOG). (2013 January). Committee Opinion – Committee on Obstetric Practice: Weight Gain During Pregnancy. Retrieved from http://www.acog.org/Resources-And-Publications/Committee-Opinions/Committee-on-Obstetric-Practice/Weight-Gain-During-Pregnancy.

  24. Thilagavathi J, Venkatesh S, Dada R . Telomere length in reproduction. Andrologia 2013; 45: 289–304.

    Article  CAS  PubMed  Google Scholar 

  25. Zhu H, Wang X, Gutlin B, Davis CL, Keeton D, Thomas J et al. Leukocyte telomere length in healthy white and black adolescents: relation to race, sex, adiposity, adipokines and physical acitvity. J Pediatr 2011; 158 (2): 215–220.

    Article  PubMed  Google Scholar 

  26. Drury SS, Mabile E, Brett ZH, Esteves K, Jones E, Shirtcliff EA et al. The association of telomere length with family violence and disruption. Pediatrics 2014; 134 (1): e128–e137.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rewak M, Buka S, Prescott J, De Vivo I, Loucks EB, Kawachi I et al. Race-related health disparities and biological aging: does rate of telomere shortening differ across blacks and whites? Biol Psychol 2014; 99: 92–99.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Desai S, Alva S . Maternal Education and Child Heath: Is there a strong causal relationship? Demography 1998; 35: 71–81.

    Article  CAS  PubMed  Google Scholar 

  29. Friedrich U, Schwab M, Griese EU, Fritz P, Klotz U . Telomeres in neonates: new insights in fetal hematopoiesis. Pediatr Res 2001; 49 (2): 252–256.

    Article  CAS  PubMed  Google Scholar 

  30. Cohen S, Janicki-Deverts D, Turner RB, Marsland AL, Casselbrant ML, Li-Korotky HS et al. Child socioeconomic status, telomere length, and susceptibility to upper respiratory infection. Brain Behav Immun 2013; 34: 31–38.

    Article  CAS  PubMed  Google Scholar 

  31. Carroll JE, Diez Roux AV, Fitzpatrick AL, Seeman T . Low social support is associated with shorter leukocyte telomere length in late life: multi-ethnic study of atherosclerosis. Psychosom Med 2013; 75 (2): 171–177.

    Article  CAS  PubMed  Google Scholar 

  32. Needham BL, Adler N, Gregorich S, Rehnkopf D, Lin J, Blackburn EH et al. Socioeconomic status, health behavior, and leukocyte telomere length in the National Health and Nutrition Examination Survey 1999–2002. Soc Sci Med 2013; 85: 1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Steptoe A, Hamer M, Butcher L, Lin J, Brydon L, Kivimaki M et al. Educational attainment but not measures of current socioeconomic circumstances are associated with leukocyte telomere length in healthy older men and women. Brain Behav Immun 2011; 25 (7): 1292–1298.

    Article  PubMed  Google Scholar 

  34. Elwell CE . The Distribution of Household Income and the Middle Class, Congressional Research Service, March 10, 2014; 7-5700: RS20811. Available at: www.crs.gov.

    Google Scholar 

  35. Barnes SK, Ozanne SE . Pathways linking the early environment to long-term health and lifespan. Prog Biophys Mol Biol 2011; 106: 323–336.

    Article  CAS  PubMed  Google Scholar 

  36. Raqib R, Adlam DS, Sarker P, Ahmad SM, Ara G, Yunus M et al. Low birth weight is associated altered immune function in rural Bangladeshi children: a birth cohort. Am J Clin Nutr 2007; 85 (3): 845–852.

    Article  CAS  PubMed  Google Scholar 

  37. Barros MC, Mitsuhiro SS, Chalem E, Laranjeira RR, Guinsburg R . Depression during gestation in adolescent mothers interferes with neonatal neurobehavior. Rev Bras Psiquiatr 2013; 35 (4): 353–359.

    Article  PubMed  Google Scholar 

  38. Diego MA, Jones NA, Field T, Hernandez-Reif M, Schanberg S, Kuhn C et al. Maternal psychological distress, prenatal cortisol, and fetal weight. Psychosom Med 2006; 68 (5): 53.

    Article  Google Scholar 

  39. Biegler KA, Anderson AK, Wenzel LB, Osann K, Nelson EL . Longitudinal change in telomere stress response in a randomized pilot biobehavioral clinical study: implications for cancer prevention. Cancer Prev Res 2012; 5 (10): 1173–1182.

    Article  Google Scholar 

  40. Lin J, Epel E, Cheon J, Kroenke C, Sinclair E, Bigos B et al. Analyses and comparisons of telomerase activity and telomere length in human T and B cells: Insights for epidemiology of telomere maintenance. J Immunol Methods 2010; 352 (1–2): 71–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding received from NIH NIDDK 080825 and 097458. This publication was made possible by the National Institute on Minority Health and Health Disparities, National Institutes of Health, through Grant Number R25MD006832.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J M Wojcicki.

Ethics declarations

Competing interests

JL is a consultant to Telomere Diagnostics Inc., formerly Telomere Health, and owns stock in the company, and the company did not play any role in this research. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Journal of Perinatology website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wojcicki, J., Olveda, R., Heyman, M. et al. Cord blood telomere length in Latino infants: relation with maternal education and infant sex. J Perinatol 36, 235–241 (2016). https://doi.org/10.1038/jp.2015.178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2015.178

This article is cited by

Search

Quick links