Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Continuous positive airway pressure and conventional mechanical ventilation in the treatment of meconium aspiration syndrome

Abstract

Meconium aspiration syndrome (MAS) is a complex syndrome that ranges in severity from mild respiratory distress to severe respiratory failure, persistent pulmonary hypertension of the newborn and sometimes death. Understanding of the syndrome's complicated pathophysiology will help determine the appropriate treatment strategy, including the use of continuous positive airway pressure (CPAP), conventional mechanical ventilation (CMV) and other therapies. Approximately 30 to 50% of infants diagnosed with MAS will require CPAP or mechanical ventilation. The optimum modes of ventilation for MAS are not known. Very few studies have been conducted to determine ‘best’ ventilatory strategies. Despite the introduction, over the last two decades, of innovative ventilatory treatments for this disease (for example, surfactant, high-frequency ventilation, inhaled nitric oxide, extracorporeal membrane oxygenation), the majority of infants can be successfully managed with CPAP or mechanical ventilation alone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Vidyasagar D, Yeh TF, Harris V, Pildes RD . Assisted ventilation in infants with meconium aspiration syndrome. Pediatrics 1975; 56: 208–213.

    CAS  PubMed  Google Scholar 

  2. Bhutani VK, Chima R, Sivieri EM . Innovative neonatal ventilation and meconium aspiration syndrome. Indian J Pediatr 2003; 70 (5): 421–427.

    Article  Google Scholar 

  3. Wiswell TE, Tuggle JM, Turner BS . Meconium aspiration syndrome: have we made a difference? Pediatrics 1990; 85: 848–852.

    Google Scholar 

  4. Wiswell TE, Gannon CM, Jacob J, Goldsmith L, Szyld E, Weiss K et al. Delivery room management of the apparently vigorous meconium-stained neonate: results of the multicenter, international collaborative trial. Pediatrics 2000; 105 (1 Part 1): 1–7.

    Article  CAS  Google Scholar 

  5. Fraser WD, Hofmeyr GJ, Lede R, Faron G, Alexander S, Goffinet F et al. An international trial for the prevention of meconium aspiration syndrome. New Engl J Med 2005; 353: 909–917.

    Article  CAS  Google Scholar 

  6. Halliday HL, Sweet D . Endotracheal intubation at birth for preventing morbidity and mortality in vigorous, meconium-stained infants born at term (Cochrane Review). The Cochrane Library, Issue 2, 2003. Oxford: Update Software.

    Google Scholar 

  7. Fuloria M, Wiswell TE . Managing meconium aspiration. Contemp Ob/Gyn 2000; July: 113–125.

    Google Scholar 

  8. Goetzman BW . Meconium aspiration. Am J Dis Child 1992; 146: 1282–1283.

    CAS  PubMed  Google Scholar 

  9. Wiswell TE, Srinivasan P, Roberton NRC . Aspiration syndromes. In: Greenough A, Milner AD (eds). Neonatal Respiratory Disorders, 2nd edn, Arnold: London, UK, 2003, pp 334–354.

    Chapter  Google Scholar 

  10. Harris TR, Herrick BR . Pneumothorax in the Newborn. Biomedical Communications, Arizona Health Sciences Center: Tucson, AZ, 1978.

    Google Scholar 

  11. Davey AM, Becker JD, Davis JM . Meconium aspiration syndrome: physiologic and inflammatory changes in a newborn piglet model. Pediatr Pulmonol 1993; 16: 101–108.

    Article  CAS  Google Scholar 

  12. Zagariya A, Bhat R, Uhal B, Navale S, Freidine M, Vidyasagar D . Cell death and lung cell histology in meconium aspirated newborn rabbit lung. Eur J Pediatr 2000; 159: 819–826.

    Article  CAS  Google Scholar 

  13. Dargaville PA, South M, McDougall PN . Surfactant and surfactant inhibitors in meconium aspiration syndrome. J Pediatr 2001; 138: 113–115.

    Article  CAS  Google Scholar 

  14. Cleary GM, Wiswell TE . Meconium stained amniotic fluid and the meconium aspiration syndrome: an update. Pediatr Clin North Am 1998; 45: 511–529.

    Article  CAS  Google Scholar 

  15. Fox WW, Gewitz MH, Dinwiddie R, Drummond WH, Peckham GJ . Pulmonary hypertension in the perinatal aspiration syndromes. Pediatrics 1977; 59: 205–211.

    CAS  PubMed  Google Scholar 

  16. Walsh-Sukys M . Persistent pulmonary hypertension of the newborn: the black box revisited. Clin Perinatol 1993; 20: 127–143.

    Article  CAS  Google Scholar 

  17. Goldsmith JP, Karotkin EH . Introduction. In: Goldsmith JP, Karotkin EH (eds). Assisted Ventilation of the Neonate, 4th edn, WB Saunders: Philadelphia, 2003, pp 1–14.

    Google Scholar 

  18. Simbruner G . Inadvertent positive end-expiratory pressure in mechanically ventilated newborn infants: detection and effect on lung mechanics and gas exchange. J Pediatr 1986; 108: 589–595.

    Article  CAS  Google Scholar 

  19. Wood BR . Physiologic principles. In: Goldsmith JP, Karotkin EH (eds). Assisted Ventilation of the Neonate. 4th edn, WB Saunders: Philadelphia, 2003, pp 15–40.

    Chapter  Google Scholar 

  20. Fox WW, Berman LS, Downes Jr JJ, Peckham GJ . The therapeutic application of end-expiratory pressure in the meconium aspiration syndrome. Pediatrics 1975; 56: 214–217.

    CAS  PubMed  Google Scholar 

  21. Gupta A, Rastogi S, Sahni R, Bhutada A, Bateman D, Rastogi D et al. Inhaled nitric oxide and gentle ventilation in the treatment of pulmonary hypertension of the newborn—a single-center, 5 year experience. J Perinatol 2002; 22: 435–441.

    Article  Google Scholar 

  22. Lakshminrusimha S, Ruddell JA, Steinhorn RH, Ryan RM, Gugino SF, Morin FC et al. Pulmonary arterial contractility in neonatal lambs increases with 100% oxygen resuscitation. Pediatr Res 2006; 59 (1): 137–141.

    Article  Google Scholar 

  23. Ambalavanan N, Schelonka R, Carlo W . Ventilatory strategies. In: Goldsmith JP, Karotkin EH (eds). Assisted Ventilation of the Neonate, 4th edn, WB Saunders: Philadelphia, 2003, pp 249–259.

    Chapter  Google Scholar 

  24. Drummond WH, Peckham GJ, Fox WW . The clinical spectrum of the newborn with persistent pulmonary hypertension. Clin Pediatr 1977; 16: 335–341.

    Article  CAS  Google Scholar 

  25. Bifano EM, Pfannenstiel A . Duration of hyperventilation and outcome in infants with persistent pulmonary hypertension. Pediatrics 1988; 81: 657–666.

    CAS  PubMed  Google Scholar 

  26. Walsh-Sukys MC, Tyson JE, Wright LL, Bauer CR, Korones SB, Stevenson DK et al. PPHN in the era before NO: practice variation and outcomes. Pediatrics 2000; 105 (1 Part 1): 14–20.

    Article  CAS  Google Scholar 

  27. Mourani PM, Ivy DD, Gao D, Abman SH . Pulmonary vascular effects of inhaled nitric oxide and oxygen tension in bronchopulmonary dysplasia. Am J Respir Crit Care Med 2004; 170 (9): 1006–1013.

    Article  Google Scholar 

  28. van Kaam AH, Haitsma JJ, De Jaegere A, van Aalderen WM, Kok JH, Lachmann B . Open lung ventilation improves gas exchange and attenuates secondary lung injury in a piglet model of meconium aspiration. Crit Care Med 2004; 32: 443–449.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J P Goldsmith.

Additional information

Disclosure

JP Goldsmith has received consulting fees from Discovery Labs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldsmith, J. Continuous positive airway pressure and conventional mechanical ventilation in the treatment of meconium aspiration syndrome. J Perinatol 28 (Suppl 3), S49–S55 (2008). https://doi.org/10.1038/jp.2008.156

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2008.156

This article is cited by

Search

Quick links