Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ambulatory and central haemodynamics during progressive ascent to high-altitude and associated hypoxia

Abstract

High-altitude hypoxia causes major cardiovascular changes, which may result in raised resting brachial blood pressure (BP). However, the effect of high-altitude hypoxia on more sensitive measures of BP control (such as 24 h ambulatory BP and resting central BP) is largely unknown. This study aimed to assess this and compare high-altitude responses to resting brachial BP, as well as determine the haemodynamic correlates of acute mountain sickness (AMS) during a progressive trekking ascent to high-altitude. Measures of oxygen saturation (pulse oximetry), 24 h ambulatory BP, resting brachial and central BP (Pulsecor) were recorded in 10 adults (aged 27±4, 30% male) during a 9-day trek to Mount Everest base camp, Nepal. Data were recorded at sea level (stage 1; <450 m above sea level (ASL)) and at progressive ascension to 3440 m ASL (stage 2), 4350 m ASL (stage 3) and 5164 m ASL (stage 4). The Lake Louise score (LLS) was used to quantify AMS symptoms. Total LLS increased stepwise from sea level to stage 4 (0.3±0.7 vs 4.4±2.0, P=0.012), whereas oxygen saturation decreased to 77±9% (P=0.001). The highest recordings of 24 h ambulatory, daytime, night time, brachial and central systolic BP and diastolic BP were achieved at stage 3, which were significantly greater than at sea level (P<0.005 for all). Twenty-four-hour ambulatory heart rate (HR) and night HR correlated with oxygen saturation (r=−0.741 and −0.608, both P<0.001) and total LLS (r=0.648 and r=0.493, both P<0.001). We conclude that 24 h ambulatory BP, central BP and HR are elevated during high-altitude hypoxia, but AMS symptoms are only related to tachycardia.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2

References

  1. Leissner KB, Mahmood FU . Physiology and pathophysiology at high altitude: considerations for the anesthesiologist. J Anesth 2009; 23 (4): 543–553.

    Article  PubMed  Google Scholar 

  2. Reeves JT, Groves BM, Sutton JR, Wagner PD, Cymerman A, Malconian MK et al. Operation Everest II: preservation of cardiac function at extreme altitude. J Appl Physiol 1987; 63 (2): 531–539.

    CAS  Article  PubMed  Google Scholar 

  3. Klausen K . Cardiac output in man in rest and work during and after acclimatization to 3800 m. J Appl Physiol 1966; 21 (2): 609–616.

    CAS  Article  PubMed  Google Scholar 

  4. Hainsworth R, Drinkhill MJ, Rivera-Chira M . The autonomic nervous system at high altitude. Clin Auton Res 2007; 17 (1): 13–19.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Rhodes HL, Chesterman K, Chan CW, Collins P, Kewley E, Pattinson KT et al. Systemic blood pressure, arterial stiffness and pulse waveform analysis at altitude. J R Army Med Corps 2011; 157 (1): 110–113.

    CAS  Article  PubMed  Google Scholar 

  6. Hooper TJ, Levett DZ, Mellor AJ, Grocott MP . Resting and exercising cardiorespiratory variables and acute mountain sickness. J R Nav Med Serv 2010; 96 (1): 6–12.

    CAS  PubMed  Google Scholar 

  7. Bernardi L, Passino C, Spadacini G, Calciati A, Robergs R, Greene R et al. Cardiovascular autonomic modulation and activity of carotid baroreceptors at altitude. Clin Sci (Lond) 1998; 95 (5): 565–573.

    CAS  Article  Google Scholar 

  8. Kanstrup IL, Poulsen TD, Hansen JM, Andersen LJ, Bestle MH, Christensen NJ et al. Blood pressure and plasma catecholamines in acute and prolonged hypoxia: effects of local hypothermia. J Appl Physiol 1999; 87 (6): 2053–2058.

    CAS  Article  PubMed  Google Scholar 

  9. Vlachopoulos C, Aznaouridis K, O'Rourke MF, Safar ME, Baou K, Stefanadis C . Prediction of cardiovascular events and all-cause mortality with central haemodynamics: a systematic review and meta-analysis. Eur Heart J 2010; 31 (15): 1865–1871.

    Article  PubMed  Google Scholar 

  10. Mancia G, Facchetti R, Bombelli M, Grassi G, Sega R . Long-term risk of mortality associated with selective and combined elevation in office, home, and ambulatory blood pressure. Hypertension 2006; 47 (5): 846–853.

    CAS  Article  PubMed  Google Scholar 

  11. Head GA, McGrath BP, Mihailidou AS, Nelson MR, Schlaich MP, Stowasser M et al. Ambulatory blood pressure monitoring in Australia: 2011 consensus position statement. J Hypertens 2012; 30 (2): 253–266.

    CAS  Article  PubMed  Google Scholar 

  12. Sharman JE, Laurent S . Central blood pressure in the management of hypertension: soon reaching the goal? J Hum Hypertens 2013; 27 (7): 405–411.

    CAS  Article  PubMed  Google Scholar 

  13. Bilo G, Caldara G, Styczkiewicz K, Revera M, Lombardi C, Giglio A et al. Effects of selective and nonselective beta-blockade on 24-h ambulatory blood pressure under hypobaric hypoxia at altitude. J Hypertens 2011; 29 (2): 380–387.

    CAS  Article  PubMed  Google Scholar 

  14. Wolfel E, Selland M, Mazzeo R, Reeves J . Systemic hypertension at 4,300m is related to sympathoadrenal activity. J Appl Physiol 1994; 76: 1643–1650.

    CAS  Article  PubMed  Google Scholar 

  15. Veglio M, Maule S, Cametto G, Cogo A, Lussianna L, Madrigale G et al. The effects of exposure to moderate altitude on cardiovascular autonomic function in normal subjects. Clin Auton Res 1999; 9 (3): 123–127.

    CAS  Article  PubMed  Google Scholar 

  16. Parati G, Revera M, Giuliano A, Faini A, Bilo G, Gregorini F et al. Effects of acetazolamide on central blood pressure, peripheral blood pressure, and arterial distensibility at acute high altitude exposure. Eur Heart J 2013; 34 (10): 759–766.

    CAS  Article  PubMed  Google Scholar 

  17. Climie RE, Schultz MG, Nikolic SB, Ahuja KD, Fell JW, Sharman JE . Validity and reliability of central blood pressure estimated by upper arm oscillometric cuff pressure. Am J Hypertens 2012; 25 (4): 414–420.

    Article  PubMed  Google Scholar 

  18. Lowe A, Harrison W, El-Aklouk E, Ruygrok P, Al-Jumaily AM . Non-invasive model-based estimation of aortic pulse pressure using suprasystolic brachial pressure waveforms. J Biomech 2009; 42 (13): 2111–2115.

    CAS  Article  PubMed  Google Scholar 

  19. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003; 42 (6): 1206–1252.

    CAS  Article  PubMed  Google Scholar 

  20. Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G et al2007 Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 2007; 28 (12): 1462–1536.

    PubMed  Google Scholar 

  21. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 2006; 27 (21): 2588–2605.

    Article  PubMed  Google Scholar 

  22. Palatini P, Frigo G, Bertolo O, Roman E, Da Corta R, Winnicki M . Validation of the A&D TM-2430 device for ambulatory blood pressure monitoring and evaluation of performance according to subjects' characteristics. Blood Press Monit 1998; 3 (4): 255–260.

    CAS  PubMed  Google Scholar 

  23. Savourey G, Guinet A, Besnard Y, Garcia N, Hanniquet AM, Bittel J . Evaluation of the Lake Louise acute mountain sickness scoring system in a hypobaric chamber. Aviat Space Environ Med 1995; 66 (10): 963–967.

    CAS  PubMed  Google Scholar 

  24. Naeije R . Physiological adaptation of the cardiovascular system to high altitude. Prog Cardiovasc Dis 2010; 52 (6): 456–466.

    Article  PubMed  Google Scholar 

  25. Bartsch P, Gibbs JS . Effect of altitude on the heart and the lungs. Circulation 2007; 116 (19): 2191–2202.

    Article  PubMed  Google Scholar 

  26. Wilkinson IB, MacCallum H, Flint L, Cockcroft JR, Newby DE, Webb DJ . The influence of heart rate on augmentation index and central arterial pressure in humans. J Physiol 2000; 525 (Pt 1): 263–270.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Fayed N, Modrego PJ, Morales H . Evidence of brain damage after high-altitude climbing by means of magnetic resonance imaging. Am J Med 2006; 119 (2): 168 e1–168 e6.

    Article  Google Scholar 

  28. Boussuges A, Molenat F, Burnet H, Cauchy E, Gardette B, Sainty JM et al. Operation Everest III (Comex '97): modifications of cardiac function secondary to altitude-induced hypoxia. An echocardiographic and Doppler study. Am J Respir Crit Care Med 2000; 161 (1): 264–270.

    CAS  Article  PubMed  Google Scholar 

  29. Salvi P, Revera M, Faini A, Giuliano A, Gregorini F, Agostoni P et al. Changes in subendocardial viability ratio with acute high-altitude exposure and protective role of acetazolamide. Hypertension 2013; 61 (4): 793–799.

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J E Sharman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schultz, M., Climie, R. & Sharman, J. Ambulatory and central haemodynamics during progressive ascent to high-altitude and associated hypoxia. J Hum Hypertens 28, 705–710 (2014). https://doi.org/10.1038/jhh.2014.15

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2014.15

Further reading

Search

Quick links