Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Subendocardial viability ratio as an index of impaired coronary flow reserve in hypertensives without significant coronary artery stenoses

Abstract

Subendocardial viability ratio (SEVR), calculated through pulse wave analysis, is an index of myocardial oxygen supply and demand. Our aim was to evaluate the relationship between coronary flow reserve (CFR) and SEVR in 36 consecutive untreated hypertensives (aged 57.9 years, 12 males, all Caucasian) with indications of myocardial ischaemia and normal coronary arteries in coronary angiography. CFR was calculated by a 0.014-inch Doppler guidewire (Flowire, Volcano, San Diego, CA, USA) in response to bolus intracoronary administration of adenosine (30–60 μg). SEVR was calculated by radial applanation tonometry, while diastolic function was evaluated by means of transmitral flow and tissue Doppler imaging. Hypertensive patients with low CFR (n=24) compared with those with normal CFR (n=12) exhibited significantly decreased SEVR by 24.5% (P=0.002). In hypertensives with low CFR, CFR was correlated with SEVR (r=0.651, P=0.001). After applying multivariate linear regression analysis, age, left ventricular mass index, Em/Am, 24-h diastolic blood pressure (BP) and SEVR turned out to be the only independent predictors of CFR (adjusted R2=0.718). Estimation of SEVR by using applanation tonometry may provide a reliable tool for the assessment of coronary microcirculation in essential hypertensives with indications of myocardial ischaemia and normal coronary arteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Kern MJ, Lerman A, Bech JW, De Bruyne B, Eeckhout E, Fearon WF et al. American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology. Physiological assessment of coronary artery disease in the cardiac catheterization laboratory: a scientific statement from the American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology. Circulation 2006; 114 (12): 1321–1341.

    Article  Google Scholar 

  2. Camici PG, Crea F . Coronary microvascular dysfunction. N Engl J Med 2007; 356: 830–840.

    Article  CAS  Google Scholar 

  3. Brush Jr JE, Cannon III RO, Schenke WH, Bonow RO, Leon MB, Maron BJ et al. Angina due to coronary microvascular disease in hypertensive patients without left ventricular hypertrophy. N Engl J Med 1988; 319: 1302–1307.

    Article  Google Scholar 

  4. Strauer BE, Sshwartzkopff B, Kelm M . Assessing the coronary circulation in hypertension. J Hypert 1998; 16: 1221–1233.

    Article  CAS  Google Scholar 

  5. Nichols W, O’Rourke MF (eds). McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles, 5th edn. Edward Arnold: London, 2005.

    Google Scholar 

  6. Buckberg GD, Fixler DE, Archie JP, Hoffman JI . Experimental subendocardial ischemia in dogs with normal coronary arteries. Circ Res 1972; 30: 67–81.

    Article  CAS  Google Scholar 

  7. Mancia G, Laurent S, Agabiti-Rosei E, Ambrosioni E, Burnier M, Caulfield MJ et al. Reappraisal of European guidelines on hypertension management: a European Society of Hypertension Task Force document. J Hypertens 2009; 27 (11): 2121–2158.

    Article  CAS  Google Scholar 

  8. Tsioufis C, Syrseloudis D, Dimitriadis K, Thomopoulos C, Tsiachris D, Pavlidis P et al. Disturbed circadian blood pressure rhythm and C-reactive protein in essential hypertension. J Hum Hypertens 2008; 22 (7): 501–508.

    Article  CAS  Google Scholar 

  9. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005; 18: 1440–1463.

    Article  Google Scholar 

  10. Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I et al. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. Am J Cardiol 1986; 57: 450–458.

    Article  CAS  Google Scholar 

  11. Tsioufis C, Chatzis D, Dimitriadis K, Stougianos P, Kakavas A, Vlasseros I et al. Left ventricular diastolic dysfunction is accompanied by increased aortic stiffness in the early stages of essential hypertension: a TDI approach. J Hypertens 2005; 23: 1745–1750.

    Article  CAS  Google Scholar 

  12. Vlachopoulos C, O’Rourke M . Genesis of the normal and abnormal arterial pulse. Curr Probl Cardiol 2000; 25: 297–368.

    Article  Google Scholar 

  13. Agabiti-Rosei E, Mancia G, O’Rourke MF, Roman MJ, Safar ME, Smulyan H et al. Central blood pressure measurements and antihypertensive therapy: a consensus document. Hypertension 2007; 50 (1): 154–160.

    Article  CAS  Google Scholar 

  14. Hoffman JIE, Buckberg GD . The myocardial supply: demand ratio: a critical review. Am J Cardiol 1978; 41: 327–332.

    Article  CAS  Google Scholar 

  15. Reis SE, Holubkov R, Lee JS, Sharaf B, Reichek N, Rogers WJ et al. Coronary flow velocity response to adenosine characterizes coronary microvascular function in women with chest pain and no obstructive coronary disease: results from the pilot phase of the Women's Ischemia Syndrome Evaluation (WISE) study. J Am Coll Cardiol 1999; 33: 1469–1475.

    Article  CAS  Google Scholar 

  16. Klocke FJ . Measurements of coronary flow reserve: defining pathophysiology versus making decisions about patient care. Circulation 1987; 76: 1183–1189.

    Article  CAS  Google Scholar 

  17. O’Rourke MF, Pauca A, Jiang XJ . Pulse wave analysis. Br J Clin Pharmacol 2001; 51: 507–522.

    Article  Google Scholar 

  18. Siebenhofer A, Kemp CRW, Sutton AJ, Williams B . The reproducibility of central aortic blood pressure measurements in healthy subjects using applanation tonometry and sphygmocardiography. J Hum Hypertens 1999; 13: 625–629.

    Article  CAS  Google Scholar 

  19. Wilkinson IB, Fuchs SA, Jansen IM, Spratt JC, Murray GD, Cockcroft JR et al. Reproducibility of pulse wave velocity and augmentation index measured by pulse wave analysis. J Hypertens 1998; 16: 2079–2084.

    Article  CAS  Google Scholar 

  20. Crilly M, Coch C, Bruce M, Clark H, Williams D . Indices of cardiovascular function derived from peripheral pulse wave analysis using radial applanation tonometry: a measurement repeatability study. Vasc Med 2007; 12 (3): 189–197.

    Article  Google Scholar 

  21. Oliveros RA, Boucher CA, Haycraft GL, Beckmann CH . Myocardial oxygen supply-demand ratio: a validation of peripherally vs centrally determined values. Chest 1979; 75 (6): 693–696.

    Article  CAS  Google Scholar 

  22. Schwartzkopff B, Motz W, Frenzel H, Vogt M, Knauer S, Strauer BE . Structural and functional alterations of the intramyocardial coronary arterioles in patients with arterial hypertension. Circulation 1993; 88: 993–1003.

    Article  CAS  Google Scholar 

  23. Vogt M, Motz W, Strauer BE . Coronary hemodynamics in hypertensive heart disease. Eur Heart J 1992; 13 (suppl D): 44–49.

    Article  Google Scholar 

  24. Treasure CB, Klein JL, Vita JA, Manoukian SV, Renwick GH, Selwyn AP et al. Hypertension and left ventricular hypertrophy are associated with impaired endothelium-mediated relaxation in human coronary resistance vessels. Circulation 1993; 87: 86–93.

    Article  CAS  Google Scholar 

  25. Schäfer S, Kelm M, Mingers S, Strauer BE . Left ventricular remodeling impairs coronary flow reserve in hypertensive patients. J Hypertens 2002; 20: 1431–1437.

    Article  Google Scholar 

  26. Galderisi M, Cicala S, Caso P, De Simone L, D’Errico A, Petrocelli A et al. Coronary flow reserve and myocardial diastolic dysfunction in arterial hypertension. Am J Cardiol 2002; 90: 860–864.

    Article  Google Scholar 

  27. Galderisi M, de Simone G, Cicala S, De Simone L, D’Errico A, Caso P et al. Coronary flow reserve in hypertensive patients with appropriate or inappropriate left ventricular mass. J Hypertens 2003; 21 (11): 2183–2188.

    Article  CAS  Google Scholar 

  28. Galderisi M, Capaldo B, Sidiropulos M, D’Errico A, Ferrara L, Turco A et al. Determinants of reduction of coronary flow reserve in patients with type 2 diabetes mellitus or arterial hypertension without angiographically determined epicardial coronary stenosis. Am J Hypertens 2007; 20 (12): 1283–1290.

    Article  Google Scholar 

  29. Galderisi M, de Simone G, D’Errico A, Sidiropulos M, Viceconti R, Chinali M et al. Independent association of coronary flow reserve with left ventricular relaxation and filling pressure in arterial hypertension. Am J Hypertens 2008; 21 (9): 1040–1046.

    Article  Google Scholar 

  30. Chemla D, Nitenberg A, Teboul JL, Richard C, Monnet X, le Clesiau H et al. Subendocardial viability index is related to the diastolic/systolic time ratio and left ventricular filling pressure, not to aortic pressure: an invasive study in resting humans. Clin Exp Pharmacol Physiol 2009; 36 (4): 413–418.

    Article  CAS  Google Scholar 

  31. Chemla D, Nitenberg A, Teboul JL, Richard C, Monnet X, le Clesiau H et al. Subendocardial viability ratio estimated by arterial tonometry: a critical evaluation in elderly hypertensive patients with increased aortic stiffness. Clin Exp Pharmacol Physiol 2008; 35 (8): 909–915.

    Article  CAS  Google Scholar 

  32. Chemla D, Nitenberg A . Potential association between aortic stiffness, diastolic/systolic pressure time index and the balance between cardiac oxygen supply and demand: a word of caution. J Hypertens 2008; 26: 2250–2251.

    Article  CAS  Google Scholar 

  33. Merkus D, Kajiya F, Vink H, Vergroesen I, Dankelman J, Goto M et al. Prolonged diastolic time fraction protects myocardial perfusion when coronary blood flow is reduced. Circulation 1999; 100: 75–81.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Tsioufis.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsiachris, D., Tsioufis, C., Syrseloudis, D. et al. Subendocardial viability ratio as an index of impaired coronary flow reserve in hypertensives without significant coronary artery stenoses. J Hum Hypertens 26, 64–70 (2012). https://doi.org/10.1038/jhh.2010.127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2010.127

Keywords

This article is cited by

Search

Quick links