Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Assessment of residential environmental exposure to pesticides from agricultural fields in the Netherlands

Abstract

We developed a spatio-temporal model for the Netherlands to estimate environmental exposure to individual agricultural pesticides at the residential address for application in a national case–control study on Parkinson’s disease (PD). Data on agricultural land use and pesticide use were combined to estimate environmental exposure to pesticides for the period 1961 onwards. Distance categories of 0–50 m, >50–100 m, >100–500 m and >500–1000 m around residences were considered. For illustration purposes, exposure was estimated for the control population (n=607) in the PD case–control study. In a small validation effort, model estimates were compared with pesticide measurements in air and precipitation collected at 17 stations in 2000–2001. Estimated exposure prevalence was higher for pesticides used on commonly cultivated (rotating) crops than for pesticides used on fruit and bulbs only. Prevalence increased with increasing distance considered. Moderate-to-high correlations were observed between model estimates (>100–500 m and >500–1000 m) and environmental pesticide concentrations measured in 2000–2001. Environmental exposure to individual pesticides can be estimated using relevant spatial and temporal data sets on agricultural land use and pesticide use. Our approach seems to result in accurate estimates of average environmental exposure, although it remains to be investigated to what extent this reflect personal exposure to agricultural pesticides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. van der Mark M, Brouwer M, Kromhout H, Nijssen P, Huss A, Vermeulen R . Is pesticide use related to Parkinson disease? Some clues to heterogeneity in study results. Environ Health Perspect 2012; 120: 340–347.

    Article  CAS  Google Scholar 

  2. Hoppin JA . Pesticides and respiratory health: where do we go from here? Occup Environ Med 2014; 71: 80–81.

    Article  Google Scholar 

  3. Weichenthal S, Moase C, Chan P . A review of pesticide exposure and cancer incidence in the agricultural health study cohort. Environ Health Perspect 2010; 118: 1117–1125.

    Article  CAS  Google Scholar 

  4. Kubiak R, Burkle L, Cousins I, Hourdakis A, Jarvis T, Jene B et al. MPesticides in air: considerations for exposure assessment. Report of the FOCUS Working Group on Pesticides in Air, EC Document Reference SANCO/10553/2006, Rev 2 June 2008, 327 pp. http://esdac.jrc.ec.europa.eu/public_path/projects_data/focus/air/docs/FOCUS_AIR_GROUP_REPORT-FINAL.pdf.

  5. Van Den Berg F, Kubiak R, Benjey WG, Majewski MS, Yates SR, Reeves GL et al. Emission of pesticides into the air. Water Air Soil Pollut 1999; 115: 195–218.

    Article  CAS  Google Scholar 

  6. Ravier I, Haouisee E, Clément M, Seux R, Briand O . Field experiments for the evaluation of pesticide spray-drift on arable crops. Pest Manage Sci 2005; 61: 728–736.

    Article  CAS  Google Scholar 

  7. Rautmann D, Streloke M, Winkler R . New basic drift values in the authorization procedure for plant protection products. Workshop on Risk Assessment and Risk Mitigation Measures in the Context of the Authorization of Plant Protection Products (WORMM) 27-29 September 1999. Biologischen Bundesanstalt für Land- und Forstwirtschaft: Berlin, Germany, 2001, pp 133–141. URL report: http://pub.jki.bund.de/index.php/MittBBA/article/download/736/671.

  8. Wolters A, Linnemann V, van de Zande JC, Vereecken H . Field experiment on spray drift: Deposition and airborne drift during application to a winter wheat crop. Sci Total Environ 2008; 405: 269–277.

    Article  CAS  Google Scholar 

  9. Siebers J, Binner R, Wittich K . Investigation on downwind short-range transport of pesticides after application in agricultural crops. Chemosphere 2003; 51: 397–407.

    Article  CAS  Google Scholar 

  10. Carlsen SCK, Spliid NH, Svensmark B . Drift of 10 herbicides after tractor spray application. 2. Primary drift (droplet drift). Chemosphere 2006; 64: 778–786.

    Article  CAS  Google Scholar 

  11. Garron CA, Davis KC, Ernst WR . Near-field air concentrations of pesticides in potato agriculture in Prince Edward Island. Pest Manag Sci 2009; 65: 688–696.

    Article  CAS  Google Scholar 

  12. Coronado GD, Holte S, Vigoren E, Griffith WC, Barr DB, Faustman E et al. Organophosphate pesticide exposure and residential proximity to nearby fields: evidence for the drift pathway. Occup Environ Med 2011; 53: 884–891.

    Article  CAS  Google Scholar 

  13. Fenske RA, Lu C, Barr D, Needham L . Children's exposure to chlorpyrifos and parathion in an agricultural community in central Washington State. Environ Health Perspect 2002; 110: 549–553.

    Article  CAS  Google Scholar 

  14. Ward MH, Lubin J, Giglierano J, Colt JS, Wolter C, Bekiroglu N et al. Proximity to crops and residential to agricultural herbicides in Iowa. Environ Health Perspect 2006; 114: 893–897.

    Article  CAS  Google Scholar 

  15. Gunier RB, Ward MH, Airola M, Bell EM, Colt J, Nishioka M et al. Determinants of agricultural pesticide concentrations in carpet dust. Environ Health Perspect 2011; 119: 970–976.

    Article  CAS  Google Scholar 

  16. Wilson NK, Strauss WJ, Iroz-Elardo N, Chuang JC . Exposures of preschool children to chlorpyrifos, diazinon, pentachlorophenol, and 2,4-dichlorophenoxyacetic acid over 3 years from 2003 to 2005: a longitudinal model. J Expos Sci Environ Epidemiol 2010; 20: 546–558.

    Article  CAS  Google Scholar 

  17. Royal Commission on Environmental Pollution Crop Spraying and the Health of Residents and Bystanders. RCEP: London, UK. 2005, 176 pp.

  18. Royster MO, Hilborn ED, Barr D, Carty CL, Rhoney S, Walsh D . A pilot study of global positioning system/geographical information system measurement of residential proximity to agricultural fields and urinary organophosphate metabolite concentrations in toddlers. J Expo Anal Environ Epidemiol 2002; 12: 433–440.

    Article  CAS  Google Scholar 

  19. Cornelis C, Schoeters G, Kellen E, Buntinx F, Zeegers M . Development of a GIS-based indicator for environmental pesticide exposure and its application to a Belgian case-control study on bladder cancer. Int J Hyg Environ Health 2009; 212: 172–185.

    Article  Google Scholar 

  20. Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B . Parkinson's disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. Am J Epidemiol 2009; 169: 919–926.

    Article  Google Scholar 

  21. Wang A, Cockburn M, Ly TT, Bronstein JM, Ritz B . The association between ambient exposure to organophosphates and Parkinson's disease risk. Occup Environ Med 2014; 71: 275–281.

    Article  Google Scholar 

  22. Nuckols JR, Gunier RB, Riggs P, Miller R, Reynolds P, Ward MH . Linkage of the California Pesticide Use Reporting Database with spatial land use data for exposure assessment. Environ Health Perspect 2007; 115: 684–689.

    Article  CAS  Google Scholar 

  23. Rull RP, Ritz B . Historical pesticide exposure in California using pesticide use reports and land-use surveys: an assessment of misclassification error and bias. Environ Health Perspect 2003; 111: 1582–1589.

    Article  Google Scholar 

  24. Brody JG, Vorhees DJ, Melly SJ, Swedis SR, Drivas PJ, Rudel RA . Using GIS and historical records to reconstruct residential exposure to large-scale pesticide application. J Expo Anal Environ Epidemiol 2002; 12: 64–80.

    Article  Google Scholar 

  25. Hazeu GW, Bregt AK, de Wit AJW, Clevers JGW . A Dutch multi-date land use database: identification of real and methodological changes. Int J Appl Earth Obs Geoinf 2011; 13: 682–689.

    Article  Google Scholar 

  26. Brouwer M, Huss A, Vermeulen R, Nijssen PCG, De Snoo G, Kromhout H . Expert assessment of historical crop specific pesticide use in the Netherlands. Occup Environ Med 2014; 71: 717–722.

    Article  Google Scholar 

  27. van der Mark M, Nijssen PCG, Huss A, Mulleners WM, Sas GMG, van Laar T et al. A case-control study of the protective effect of alcohol, coffee, and cigarette consumption on parkinson disease risk: time-since-cessation modifies the effect of tobacco smoking. PLoS ONE 2014; 9: e95297.

    Article  Google Scholar 

  28. van der Mark M, Vermeulen R, Nijssen PCG, Mulleners WM, Sas AMG, van Laar T et al. Occupational exposure to pesticides and endotoxin and Parkinson disease in the Netherlands. Occup Environ Med 2014; 71: 757–764.

    Article  Google Scholar 

  29. Kadaster. Dutch cadastral key-registry of buildings and addresses (BAG), 2015. Available at https://data.overheid.nl/data/dataset/bag. Accessed June 2016.

  30. Kramer H, van Dorland G . Historisch grondgebruik Nederland 1990: een landelijke reconstructie van het grondgebruik rond 1990. Alterra-rapport 1327. Alterra: Wageningen, The Netherlands. 2009, 58 pp.

    Google Scholar 

  31. De Wit AJW, Clevers JGPW . Efficiency and accuracy of per-field classification for operational crop mapping. Int J Remote Sens 2004; 25: 4091–4112.

    Article  Google Scholar 

  32. CBS, Statistics Netherlands. Landbouwtelling (Agricultural census statistics) 1960-2010. Available (in part) at http://statline.cbs.nl/Statweb/dome/?TH=4220&LA=nl. Accessed December 2016.

  33. CBS, Statistics Netherlands. Gebruik gewasbeschermingsmiddelen in de landbouw; werkzame stof, toepassing (Use of pesticides in agriculture; active ingredients, application), 1995, 1998, 2000, 2004 and 2008. Available at http://statline.cbs.nl/Statweb/selection/?DM=SLNL&PA=37606&VW=T. Accessed December 2016.

  34. Duyzer JH . Pesticide concentrations in air and precipitation in the Netherlands. J Environ Monit 2003; 5: 77–80.

    Article  Google Scholar 

  35. Duyzer JH, Vonk AW . Atmospheric Deposition of Pesticides, PAHs and PCBs in the Netherlands (Translation of R2002/606). TNO Report R2003/255. TNO: Apeldoorn, The Netherlands. 2003, 105 pp.

    Google Scholar 

  36. de Lau LM, Breteler MM . Epidemiology of Parkinson's disease. Lancet Neurol 2006; 5: 525–535.

    Article  Google Scholar 

  37. Blair A, Zahm SH . Patterns of pesticide use among farmers: implications for epidemiologic research. Epidemiology 1993; 4: 55–62.

    Article  CAS  Google Scholar 

  38. Dutch Ministry of Interior and Kingdom Relations. Dataportaal van de Nederlandse overheid—BRP Gewaspercelen, 2015, available at https://data.overheid.nl/data/dataset/basisregistratie-gewaspercelen-brp Accessed June 2016.

  39. Chang ET, Adami H, Bailey WH, Boffetta P, Krieger RI, Moolgavkar SH et al. Validity of geographically modeled environmental exposure estimates. Crit Rev Toxicol 2014; 44: 450–466.

    Article  CAS  Google Scholar 

  40. Krieger RI, Chen L, Ginevan M, Watkins D, Cochran RC, Driver JH et al. Implications of estimates of residential organophosphate exposure from dialkylphosphates (DAPs) and their relevance to risk. Regul Toxicol Pharmacol 2012; 64: 263–266.

    Article  CAS  Google Scholar 

  41. Ritz B, Costello S . Geographic model and biomarker-derived measures of pesticide exposure and Parkinson's disease. Ann NY Acad Sci 2006; 1076: 378–387.

    Article  CAS  Google Scholar 

  42. Kromhout H, Heederik D . Effects of errors in the measurement of agricultural exposures. Scand J Work Environ Health 2005; 31 (SUPPL. 1): 33–38.

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by funding from the ‘Stichting Internationaal Parkinson Fonds’ (The Netherlands), research grant 2007–18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anke Huss.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Journal of Exposure Science and Environmental Epidemiology website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brouwer, M., Kromhout, H., Vermeulen, R. et al. Assessment of residential environmental exposure to pesticides from agricultural fields in the Netherlands. J Expo Sci Environ Epidemiol 28, 173–181 (2018). https://doi.org/10.1038/jes.2017.3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2017.3

Keywords

This article is cited by

Search

Quick links